Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14371, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909060

ABSTRACT

Advanced recycling offers a unique opportunity for the circular economy, especially for mixed and contaminated plastics that are difficult to recycle mechanically. However, advanced recycling has barriers such as poor selectivity, contaminant sensitivity, and the need for expensive catalysts. Reported herein is a simple yet scalable methodology for converting mixed polyethylene (high-density and low-density polyethylene recycled polyethylene) into upcycled waxes with up to 94% yield. This high yield was possible by performing the reaction at a mild temperature and was enabled by using inexpensive and reusable table salt. Without table salt, in otherwise identical conditions, the plastic remained essentially undegraded. These upcycled waxes were used as prototypes for applications such as water- and oil-resistant paper, as well as rheology modifiers for plastics. Their performance is similar to that of commercial wax as well as rheology modifiers. A preliminary economic analysis shows that the upcycled waxes obtained by this table salt-catalyzed approach offer three times more revenue than those reported in the literature. This pioneering discovery opens the door for a circular economy of plastics in general and polyolefins in particular.

2.
ACS Omega ; 6(43): 28463-28470, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34723042

ABSTRACT

The increasing concerns about human-health-related microbial infections and the need for the development of personal protective equipment (PPE) is becoming a major challenge. Because of their light weight and ease of processing, polymeric materials are widely used in designing and fabricating PPE that are being used by healthcare workers and the general population. Among the available PPEs, face masks have been widely developed from polymeric materials such as polypropylene, polycarbonate, and poly(ethylene terephthalate). However, currently, many of the face masks are not antimicrobial, which can pose a great risk for cross-infection as discarded masks can be a dangerous source of microbes. To prevent the spread of microbes, researchers have prompted the development of self-sterilizing masks that are capable of inactivating microbes via different mechanisms. Hence, this review provides a brief overview of the currently available antimicrobial-modified polymer-based PPE, and it mainly focuses on the different types of nanoparticles and other materials that have been embedded in different polymeric materials. The possibility of inhaling microplastics from wearing a face mask is also outlined, and the effects of various modifications on the health of face mask users are also explored. Furthermore, the effects of the disposed masks on the environment are underlined.

3.
Phys Chem Chem Phys ; 22(36): 20167-20188, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966418

ABSTRACT

Polymer blending is an effective method that can be used to fabricate new versatile materials with enhanced properties. The blending of two polymers can result in either a miscible or an immiscible polymer blend system. This present review provides an in-depth summary of the miscibility of LCST polymer blend systems, an area that has garnered much attention in the past few years. The initial discourse of the present review mainly focuses on process-induced changes in the miscibility of polymer blend systems, and how the preparation of polymer blends affects their final properties. This review further highlights how nanoparticles induce miscibility and describes the various methods that can be implemented to avoid nanoparticle aggregation. The concepts and different state-of-the-art experimental methods which can be used to determine miscibility in polymer blends are also highlighted. Lastly, the importance of studying miscible polymer blends is extensively explored by looking at their importance in barrier materials, EMI shielding, corrosion protection, light-emitting diodes, gas separation, and lithium battery applications. The primary goal of this review is to cover the journey from the fundamental aspects of miscible polymer blends to their applications.

4.
Phys Chem Chem Phys ; 20(29): 19470-19485, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29998240

ABSTRACT

The spatial distribution of nanoparticles in a particular host polymer matrix can be improved by using brush coated nanoparticles. In this work we have grafted styrene-acrylonitrile (SAN) onto the surface of graphene oxide (GO) and investigated as to how the demixing temperature, morphology and volume cooperativity of PMMA/SAN blends are influenced. Grafting of polymer chains on the surface of nanoparticles usually involves the use of large amounts of solvents, many which are detrimental to the environment besides involving cumbersome processes. SAN-g-GO was prepared by a robust solvent-free strategy wherein the cyano group in SAN was replaced by oxazoline groups during melt mixing in the presence of zinc acetate and ethanol amine. These newly created oxazoline groups reacted with the COOH group of GO under melt extrusion resulting in grafting of SAN on the surface of GO sheets. The effect of SAN-g-GO nanoparticles on the demixing, local segmental motions and morphology evolution for different annealing times was carefully investigated in a classical LCST system, PMMA/SAN blend, using melt rheology, modulated DSC and AFM, respectively. The changes in viscoelastic behavior in the vicinity of demixing are investigated systematically for the control, and blends with GO and SAN-g-GO. Various models were used to gain insight into the spinodal decomposition temperatures of the blends. Interestingly, the demixing temperature determined rheologically and the spinodal decomposition temperature increased significantly in the presence of polymer grafted nanoparticles in comparison to the control and blends with GO. The evolution of the morphology, interfacial driven coarsening as a function of temperature and the localization of nanoparticles were assessed using atomic force microscopy. The cooperatively re-arranging regions estimated from calorimetric measurements begin to suggest enhanced dynamic heterogeneity in the presence of GO and SAN-g-GO in the blends. Taken together, our study reveals that the solvent-free approach of grafting SAN onto GO delays demixing, suppresses coalescence and alters cooperative relaxation in PMMA/SAN blends.

SELECTION OF CITATIONS
SEARCH DETAIL
...