Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(39): 8880-8889, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37766606

ABSTRACT

The search for a simple and clean approach toward the production of sulfate radicals for water treatment gave rise to electrochemical and photoelectrochemical activation techniques. The photoelectrochemical activation method does not just distinguish itself as a promising activation method, it is also used as an efficient water treatment method with the ability to treat a myriad of pollutants due to the complementary effects of highly reactive oxidizing species. This perspective highlights some merits that distinguish sulfate monoanion radicals from hydroxyl radicals. It highlights the electrochemical, photoelectrochemical, and in situ photoelectrochemical routes of generating sulfate radicals for advanced oxidation process approach to water treatment. We provide a detailed account of the few known applications of sulfate radical enhanced photoelectrochemical treatments of water laden with organics. Finally, we placed this area of research in perspective by providing outlooks and conclusive remarks.

2.
Chemosphere ; 339: 139698, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37532200

ABSTRACT

We report the preparation and application of poly (ethylene) glycol (PEG) coated magnetite nanoparticles (MNPs) catalyst for the heterogeneous electro-Fenton (HEF) degradation of sulfamethoxazole in real wastewater PEG-coated MNPs of four MNP:PEG ratios were synthesised using the co-precipitation method. The synthesised MNP were characterised using FTIR, XRD, EDX, TEM, and CHN elemental analysis. It was observed that the coating of MNP with PEG influences the nanoparticle size, agglomeration tendencies and catalytic efficiency of MNPs properties in the HEF degradation process. A 1:1 optimal MNP:PEG catalyst yielded 91% sulfamethoxazole degradation and 48% total organic carbon removal in 60 min, which is an improvement of 11% over degradation with the uncoated MNP. The PEG-coated MNP showed higher stability in 10 consecutive reaction cycles, reduced leaching, and improved performance at a lower dosage and broader pH range than the uncoated MNPs. These results show that coating MNP with PEG enhances HEF catalytic performance in the degradation of sulfamethoxazole in wastewater.


Subject(s)
Magnetite Nanoparticles , Polyethylene Glycols , Polyethylene Glycols/chemistry , Sulfamethoxazole , Magnetite Nanoparticles/chemistry , Wastewater , Catalysis
3.
Materials (Basel) ; 16(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049063

ABSTRACT

Electrodeposited bismuth ferrite (BiFeO3) thin films on fluorine-doped tin oxide (FTO) substrate were employed as photoanodes in the photoelectrocatalytic degradation of methylene blue. The BiFeO3 thin films electrodeposited for 300 s, 600 s, 1200 s, 1800 s and 3600 s were characterised with XRD, field emission scanning electron microscopy (FESEM) and UV-vis diffuse reflectance spectroscopy. SEM images displayed different morphology at different electrodeposition times which affects the photoelectrocatalytic (PEC) performances. The FESEM cross-sectional area was used to measure the thickness of the film. The optical properties showed that the band gaps of the photoanodes were increasing as the electrodeposition time increased. The photocurrent response obtained showed that all thin film photoanodes responded to visible light and lower charge transfer resistance (from electrochemical impedance spectroscopy studies) was observed with photoanodes electrodeposited at a shorter time compared to those at a longer time. The PEC application of the photoanode for the removal of methylene blue (MB) dye in water showed that the percentage degradation decreased with an increase in electrodeposition time with removal rates of 97.6% and 70% observed in 300 s and 3600 s electrodeposition time, respectively. The extent of mineralisation was measured by total organic carbon and reusability studies were carried out. Control experiments such as adsorption, photolysis, photocatalysis and electrocatalysis processes were also investigated in comparison with PEC. The electrodeposition approach with citric acid exhibited improved electrode stability while mitigating the problem of catalyst leaching or peeling off during the PEC process.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889691

ABSTRACT

In this study, a ternary z-scheme heterojunction of Bi2WO6 with carbon nanoparticles and TiO2 nanotube arrays was used to remove paracetamol from water by photoelectrocatalysis. The materials and z-scheme electrode were characterised using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), EDS mapping, ultraviolet diffuse reflection spectroscopy (UV-DRS), photocurrent measurement, electrochemical impedance spectroscopy (EIS), uv-vis spectroscopy and total organic carbon measurement (TOC). The effect of parameters such as current density and pH were studied. At optimal conditions, the electrode was applied for photoelectrocatalytic degradation of paracetamol, which gave a degradation efficiency of 84% within 180 min. The total organic carbon removal percentage obtained when using this electrode was 72%. Scavenger studies revealed that the holes played a crucial role during the photoelectrocatalytic degradation of paracetamol. The electrode showed high stability and reusability therefore suggesting that the z-scheme Bi2WO6-CNP-TiO2 nanotube arrays electrode is an efficient photoanode for the degradation of pharmaceuticals in wastewater.

5.
ACS Omega ; 7(23): 19261-19269, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721921

ABSTRACT

Toward the improvement of the application of heterogeneous electro-Fenton in water treatment, we report a new strategy of enhancing the immobilization of a magnetite nanoparticle catalyst on a carbon felt cathode. Exploiting the intrinsic ferrimagnetic properties of magnetite nanoparticles, magnet bars were used to attach the magnetite into the void spaces of the porous carbon felt (CF) cathode. The magnetite nanoparticles were prepared by coprecipitation with variations in the molar ratios of Fe2+/Fe3+. The magnetite was characterized, attached onto the CF electrode with magnetic bars, and used in the heterogeneous electro-Fenton (EF) degradation of aspirin. The effects of the following on the degradation were studied: Fe2+/Fe3+, pH, catalyst loading concentration, and voltage. The heterogeneous EF degradation of aspirin in wastewater improved by 23% when magnetic bars were used to enhance the immobilization of the magnetite catalysts. The 1:4 Fe2+/Fe3+ ratio resulted in the highest hetero-EF catalytic degradation of aspirin with complete degradation (100%) achieved after 140 min. For a mixture of pharmaceuticals, degradation percentages of 94.3% (aspirin), 88% (ciprofloxacin), and 80% (paracetamol) in 3 h were obtained. The magnetized magnetite on the cathode was reusable for 10 cycles. Thus, the use of magnets shows a promising strategy to avoid the leaching of ferrimagnetic nanoparticle catalysts embedded in the cathode for heterogeneous EF processes.

6.
Chemosphere ; 303(Pt 1): 134961, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35577133

ABSTRACT

Development of electrochemical sensors for important drugs such nicotine (an addictive drug) is important for the society. This study reports the electrochemical detection of nicotine at a carbon nanofiber/poly (amidoamine) dendrimer modified glassy carbon electrode. The carbon nanofiber (CNF) modified GCE was prepared by drop-coating followed by the electrodeposition of generation 4 poly (amidoamine) succinamic acid dendrimer (PAMAM) to form the sensor - CNF-PAMAM GCE. Characterization of prepared materials and modified electrodes was carried out using Fourier transmission infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The CNF-PAMAM composite was confirmed by microscopy. A marked reduction in charge transfer resistance and increase in current of the CNF-PAMAM GCE in comparison to the bare electrode showed a synergic improvement electrochemical response because of the CNF-PAMAM nanocomposite. The CNF-PAMAM demonstrated an enhanced performance in the oxidation of nicotine in comparison to the bare GCE by shifting the anodic potential Epa of nicotine from 0.9 V to 0.8 V. The electrochemical sensor achieved a detection limit (LOD) of 0.02637 µM in the concentration range of 0.4815-15.41 µM of nicotine in 0.1 M PBS at pH 7.5. The sensor ability to determine nicotine in real samples was assessed in cigarettes obtaining recovery percentages of 88.00 and 97.42%. The sensor demonstrated selectivity toward nicotine in the presence of interferences. Finally, the method was validated by ultraviolet-visible spectroscopy analysis.


Subject(s)
Dendrimers , Nanofibers , Carbon/chemistry , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Nanofibers/chemistry , Nicotine , Polyamines
7.
Chemosphere ; 266: 129231, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33307414

ABSTRACT

We report the photoelectrochemical application of a visible light active FTO-Cu2O/Ag3PO4 photoanode for the abatement of sulfamethoxazole in water. The as-synthesised photoanodes were characterised using XRD, field emission SEM, EDX, diffuse reflectance UV-vis, impedance spectroscopy and chronoamperometry. The results obtained confirmed a successful formation of p-n heterojunction at the Cu2O/Ag3PO4 interface. The highest photocurrent response of 0.62 mAcm-2 was obtained for the composite photoanode which was four times higher than pure Cu2O and about three times higher than pristine Ag3PO4. The photoanode gave 67% removal efficiency within 2 h upon its photoelectrochemical application in the degradation of sulfamethoxazole with 1.5 V bias potential at pH 6.2. The FTO-Cu2O/Ag3PO4 electrode was also applied in the treatment of a cocktail of synthetic organics containing sulfamethoxazole and orange II dye. The photogenerated holes was found to be the major oxidant and the photoanodes was stable and reusable.


Subject(s)
Environmental Pollutants , Pharmaceutical Preparations , Catalysis , Light , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...