Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 42(1-9): 99-103, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15047268

ABSTRACT

The aim of this article is to describe an application of acoustic emission to characterise a process of laser droplet formation from a metal wire. Laser droplet formation is a crucial process in new laser droplet welding technology, where parts are joined by means of the heat content of a liquid metal droplet deposited onto the parts to be joined. A laser beam is used for heating and melting the wire tip, and for detaching the molten pendant droplet. Depending on the process parameters, three different outcomes of the process can be observed: (1) no droplet formed; (2) a droplet formed but not detached; (3) a droplet formed and detached from the wire. It is shown that AE can be used to monitor the process and to indicate the different process outcomes.

2.
Ultrasonics ; 38(1-8): 824-6, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10829780

ABSTRACT

The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.

SELECTION OF CITATIONS
SEARCH DETAIL
...