Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
bioRxiv ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37163057

ABSTRACT

The abundance of Lp(a) protein holds significant implications for the risk of cardiovascular disease (CVD), which is directly impacted by the copy number (CN) of KIV-2, a 5.5 kbp sub-region. KIV-2 is highly polymorphic in the population and accurate analysis is challenging. In this study, we present the DRAGEN KIV-2 CN caller, which utilizes short reads. Data across 166 WGS show that the caller has high accuracy, compared to optical mapping and can further phase ~50% of the samples. We compared KIV-2 CN numbers to 24 previously postulated KIV-2 relevant SNVs, revealing that many are ineffective predictors of KIV-2 copy number. Population studies, including USA-based cohorts, showed distinct KIV-2 CN, distributions for European-, African-, and Hispanic-American populations and further underscored the limitations of SNV predictors. We demonstrate that the CN estimates correlate significantly with the available Lp(a) protein levels and that phasing is highly important.

2.
Science ; 367(6477): 569-573, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32001654

ABSTRACT

Africa, the ancestral home of all modern humans, is the most informative continent for understanding the human genome and its contribution to complex disease. To better understand the genetics of schizophrenia, we studied the illness in the Xhosa population of South Africa, recruiting 909 cases and 917 age-, gender-, and residence-matched controls. Individuals with schizophrenia were significantly more likely than controls to harbor private, severely damaging mutations in genes that are critical to synaptic function, including neural circuitry mediated by the neurotransmitters glutamine, γ-aminobutyric acid, and dopamine. Schizophrenia is genetically highly heterogeneous, involving severe ultrarare mutations in genes that are critical to synaptic plasticity. The depth of genetic variation in Africa revealed this relationship with a moderate sample size and informed our understanding of the genetics of schizophrenia worldwide.


Subject(s)
Schizophrenia/ethnology , Schizophrenia/genetics , Synaptic Transmission/genetics , Age Factors , Autistic Disorder/genetics , Bipolar Disorder/genetics , Dopamine/physiology , Female , Genetic Variation , Glutamine/physiology , Humans , Male , Mutation , Neural Pathways/physiopathology , Schizophrenia/physiopathology , Sex Factors , South Africa/ethnology , Synapses/physiology , gamma-Aminobutyric Acid/physiology
3.
Diagn Microbiol Infect Dis ; 90(4): 241-247, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29329757

ABSTRACT

The accumulation of sequenced Francisella strains has made it increasingly apparent that the 16S rRNA gene alone is not enough to stratify the Francisella genus into precise and clinically useful classifications. Continued whole-genome sequencing of isolates will provide a larger base of knowledge for targeted approaches with broad applicability. Additionally, examination of genomic information on a case-by-case basis will help resolve outstanding questions regarding strain stratification. We report the complete genome sequence of a clinical isolate, designated here as F. novicida-like strain TCH2015, acquired from the lymph node of a 6-year-old male. Two features were atypical for F. novicida: exhibition of functional oxidase activity and additional gene content, including proposed virulence determinants. These differences, which could potentially impact virulence and clinical diagnosis, emphasize the need for more comprehensive methods to profile Francisella isolates. This study highlights the value of whole-genome sequencing, which will lead to a more robust database of environmental and clinical genomes and inform strategies to improve detection and classification of Francisella strains.


Subject(s)
Francisella/classification , Francisella/isolation & purification , Genotype , Lymph Nodes/microbiology , Tularemia/diagnosis , Child , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Francisella/genetics , Genes, Bacterial , Genetic Variation , Genome, Bacterial , Humans , Male , Oxidoreductases/genetics , Sequence Analysis, DNA , Virulence Factors/genetics , Whole Genome Sequencing
4.
J Dent Res ; 97(1): 49-59, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28813618

ABSTRACT

Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.


Subject(s)
Anodontia/genetics , Female , Genetic Linkage/genetics , Genetic Variation/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Laminin/genetics , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Male , Membrane Proteins/genetics , Mutation, Missense/genetics , Pedigree , Real-Time Polymerase Chain Reaction , Turkey , Exome Sequencing/methods , Wnt Proteins/genetics
5.
Clin Genet ; 93(4): 919-924, 2018 04.
Article in English | MEDLINE | ID: mdl-29226947

ABSTRACT

We expand the Kosaki overgrowth syndrome (KOGS) phenotype by over 70% to include 24 unreported KOGS symptoms, in a first male patient, the third overall associated with the PDGFRB c.1751C>G p.(Pro584Arg) mutation. Eighteen of these symptoms are unique to our patient, the remaining six are shared with other patients. Of the 24 unreported features overall, 6 show marked phenotype evolution and varying time of onset. The triangular face detected at 14 months and long palpebral fissures with lateral ectropion at 4 years are present in other members of the cohort. The remaining 4 are unique to Patient 5: pronounced macrocephaly from birth, increasingly triangular anterior skull from 14 months, camptodactyly, emerging at 4 years and worsening joint contractures from 6 years. Compilation of all new symptoms reported here with published clinical data further identifies at least 18 clinical parameters common to all cases to date, encompassing both known KOGS-associated PDGFRB mutations. We therefore propose a set of 18 core KOGS symptoms, with 16 present in early childhood. These results should also impact diagnostic/prognostic scope, intervention and outcome potential for KOGS patients, particularly for developmentally progressive conditions such as scoliosis and myofibroma.


Subject(s)
Genetic Predisposition to Disease , Megalencephaly/genetics , Musculoskeletal Abnormalities/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Adolescent , Child , Child, Preschool , Exome/genetics , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Megalencephaly/physiopathology , Musculoskeletal Abnormalities/physiopathology , Mutation , Phenotype
6.
Genome Announc ; 3(4)2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26272574

ABSTRACT

The bacterial pathogen Francisella tularensis was recently renewed as a tier-one select agent. F. tularensis subsp. tularensis (type A) and holarctica (type B) are of clinical relevance. Here, we report the complete genome of a virulent F. tularensis type B strain and describe its usefulness in comparative genomics.

7.
Mol Psychiatry ; 20(2): 176-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25666757

ABSTRACT

Cerebral palsy (CP) is a common, clinically heterogeneous group of disorders affecting movement and posture. Its prevalence has changed little in 50 years and the causes remain largely unknown. The genetic contribution to CP causation has been predicted to be ~2%. We performed whole-exome sequencing of 183 cases with CP including both parents (98 cases) or one parent (67 cases) and 18 singleton cases (no parental DNA). We identified and validated 61 de novo protein-altering variants in 43 out of 98 (44%) case-parent trios. Initial prioritization of variants for causality was by mutation type, whether they were known or predicted to be deleterious and whether they occurred in known disease genes whose clinical spectrum overlaps CP. Further, prioritization used two multidimensional frameworks-the Residual Variation Intolerance Score and the Combined Annotation-dependent Depletion score. Ten de novo mutations in three previously identified disease genes (TUBA1A (n=2), SCN8A (n=1) and KDM5C (n=1)) and in six novel candidate CP genes (AGAP1, JHDM1D, MAST1, NAA35, RFX2 and WIPI2) were predicted to be potentially pathogenic for CP. In addition, we identified four predicted pathogenic, hemizygous variants on chromosome X in two known disease genes, L1CAM and PAK3, and in two novel candidate CP genes, CD99L2 and TENM1. In total, 14% of CP cases, by strict criteria, had a potentially disease-causing gene variant. Half were in novel genes. The genetic heterogeneity highlights the complexity of the genetic contribution to CP. Function and pathway studies are required to establish the causative role of these putative pathogenic CP genes.


Subject(s)
Cerebral Palsy/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease/genetics , Adult , Animals , Cohort Studies , Exome , Female , Gene Library , Gestational Age , Humans , Male , Mutation , Parents , Sequence Analysis, DNA
8.
Clin Exp Immunol ; 178(3): 459-69, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25046553

ABSTRACT

In areas without newborn screening for severe combined immunodeficiency (SCID), disease-defining infections may lead to diagnosis, and in some cases, may not be identified prior to the first year of life. We describe a female infant who presented with disseminated vaccine-acquired varicella (VZV) and vaccine-acquired rubella infections at 13 months of age. Immunological evaluations demonstrated neutropenia, isolated CD4 lymphocytopenia, the presence of CD8(+) T cells, poor lymphocyte proliferation, hypergammaglobulinaemia and poor specific antibody production to VZV infection and routine immunizations. A combination of whole exome sequencing and custom-designed chromosomal microarray with exon coverage of primary immunodeficiency genes detected compound heterozygous mutations (one single nucleotide variant and one intragenic copy number variant involving one exon) within the IL7R gene. Mosaicism for wild-type allele (20-30%) was detected in pretransplant blood and buccal DNA and maternal engraftment (5-10%) demonstrated in pretransplant blood DNA. This may be responsible for the patient's unusual immunological phenotype compared to classical interleukin (IL)-7Rα deficiency. Disseminated VZV was controlled with anti-viral and immune-based therapy, and umbilical cord blood stem cell transplantation was successful. Retrospectively performed T cell receptor excision circle (TREC) analyses completed on neonatal Guthrie cards identified absent TREC. This case emphasizes the danger of live viral vaccination in severe combined immunodeficiency (SCID) patients and the importance of newborn screening to identify patients prior to high-risk exposures. It also illustrates the value of aggressive pathogen identification and treatment, the influence newborn screening can have on morbidity and mortality and the significant impact of newer genomic diagnostic tools in identifying the underlying genetic aetiology for SCID patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chickenpox/etiology , Lymphopenia/etiology , Mutation , Receptors, Interleukin-7/genetics , Rubella/etiology , Severe Combined Immunodeficiency/genetics , Vaccination/adverse effects , DNA Copy Number Variations , Exome , Female , Humans , Infant , Oligonucleotide Array Sequence Analysis , Severe Combined Immunodeficiency/immunology
11.
J Thromb Haemost ; 11(7): 1228-39, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23648131

ABSTRACT

BACKGROUND: The considerable genetic predisposition to deep vein thrombosis (DVT) is only partially accounted for by known genetic risk variants. Rare single-nucleotide variants (SNVs) of the coding areas of hemostatic genes may explain part of this missing heritability. The ADAMTS13 and VWF genes encode two interconnected proteins with fundamental hemostatic functions, the disruption of which may result in thrombosis. OBJECTIVES: To study the distribution and burden of rare coding SNVs of ADAMTS13 and VWF found by sequencing in cases and controls of DVT. PATIENTS/METHODS: The protein-coding areas of 186 hemostatic/proinflammatory genes were sequenced by next-generation technology in 94 thrombophilia-negative patients with DVT and 98 controls. Gene-specific information on ADAMTS13 and VWF was used to study the association between DVT and rare coding SNVs of the two genes. RESULTS: More than 70 billion base pairs of raw sequence data were produced to sequence the 700-kb target area with a median redundancy of × 45 in 192 individuals. Most of the 4366 SNVs identified were rare and non-synonymous, indicating pathogenetic potential. Rare (frequency of < 1%) and low-frequency (< 5%) coding SNVs of ADAMTS13 were associated with DVT (prevalence 17% vs. 4%; odds ratio [OR] 4.8 and 95% confidence interval [CI] 1.6-15.0 for rare coding; prevalence 36% vs. 23%, OR 1.9 and 95% CI 1.0-3.5 for low-frequency coding). Patients with rare coding SNVs of ADAMTS13 had lower plasma levels of ADAMTS-13 activity than patients without them. SNVs of VWF were not associated with DVT. CONCLUSIONS: We found an excess of rare coding SNVs of the ADAMTS13 gene in patients with DVT.


Subject(s)
ADAM Proteins/genetics , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Venous Thrombosis/genetics , ADAM Proteins/blood , ADAMTS13 Protein , Adult , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Italy/epidemiology , Linear Models , Logistic Models , Male , Middle Aged , Odds Ratio , Phenotype , Predictive Value of Tests , Prevalence , Risk Factors , Venous Thrombosis/blood , Venous Thrombosis/enzymology , Venous Thrombosis/epidemiology , von Willebrand Factor/genetics
13.
Mol Psychiatry ; 18(6): 700-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23147386

ABSTRACT

The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.


Subject(s)
Anxiety , Brain/pathology , Depression , Genetic Predisposition to Disease/genetics , Receptors, Corticotropin-Releasing Hormone/genetics , Animals , Anxiety/complications , Anxiety/genetics , Anxiety/pathology , Brain/diagnostic imaging , Brain/metabolism , Depression/complications , Depression/genetics , Disease Models, Animal , Female , Fluorodeoxyglucose F18 , Genetic Association Studies , Genotype , Macaca mulatta , Male , Polymorphism, Single Nucleotide/genetics , Positron-Emission Tomography
15.
Nature ; 435(7038): 43-57, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15875012

ABSTRACT

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Subject(s)
Dictyostelium/genetics , Genome , Genomics , Social Behavior , ATP-Binding Cassette Transporters/genetics , Animals , Base Composition , Cell Adhesion/genetics , Cell Movement/genetics , Centromere/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , DNA, Ribosomal/genetics , Dictyostelium/cytology , Dictyostelium/enzymology , Dictyostelium/metabolism , Eukaryotic Cells/metabolism , Gene Duplication , Gene Transfer, Horizontal/genetics , Humans , Molecular Sequence Data , Phylogeny , Proteome , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA, Transfer/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Signal Transduction/genetics , Telomere/genetics
16.
Genome Res ; 8(10): 1074-84, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9799794

ABSTRACT

The currently favored approach for sequencing the human genome involves selecting representative large-insert clones (100-200 kb), randomly shearing this DNA to construct shotgun libraries, and then sequencing many different isolates from the library. This method, entitled directed random shotgun sequencing, requires highly redundant sequencing to obtain a complete and accurate finished consensus sequence. Recently it has been suggested that a rapidly generated lower redundancy sequence might be of use to the scientific community. Low-redundancy sequencing has been examined previously using simulated data sets. Here we utilize trace data from a number of projects submitted to GenBank to perform reconstruction experiments that mimic low-redundancy sequencing. These low-redundancy sequences have been examined for the completeness and quality of the consensus product, information content, and usefulness for interspecies comparisons. The data presented here suggest three different sequencing strategies, each with different utilities. (1) Nearly complete sequence data can be obtained by sequencing a random shotgun library at sixfold redundancy. This may therefore represent a good point to switch from a random to directed approach. (2) Sequencing can be performed with as little as twofold redundancy to find most of the information about exons, EST hits, and putative exon similarity matches. (3) To obtain contiguity of coding regions, sequencing at three- to fourfold redundancy would be appropriate. From these results, we suggest that a useful intermediate product for genome sequencing might be obtained by three- to fourfold redundancy. Such a product would allow a large amount of biologically useful data to be extracted while postponing the majority of work involved in producing a high quality consensus sequence.


Subject(s)
Gene Library , Sequence Analysis, DNA/methods , Animals , Contig Mapping , Expressed Sequence Tags , Genome, Human , Humans , Mice , Quality Control , Retrospective Studies , Sequence Analysis, DNA/standards
18.
Genome Res ; 8(1): 29-40, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9445485

ABSTRACT

The Human Genome Project has created a formidable challenge: the extraction of biological information from extensive amounts of raw sequence. With the increasing availability of genomic sequence from other species, one approach to extracting coding and regulatory element information is through cross-species sequence comparison. To assess the strengths and weaknesses of this methodology for large-scale sequence analysis, 227 kb of mouse sequence syntenic to a gene-rich cluster on human chromosome 12p13 was obtained. Primarily through percent identity plots (PIPs) of SIM comparative sequence alignments, the sequence of coding regions, putative alternative exons, conserved noncoding regions, and correlation in repetitive element insertions were easily determined. The analysis demonstrated that the number, order, and orientation of all 17 genes are conserved between the two species, whereas two human pseudogenes are absent in mouse. In addition, apart from MIRs, no direct correlation of distribution or position of the majority of repetitive elements between the two species is seen. Finally, in examining the synonymous and nonsynonymous substitution rates in the conserved genes, a large variation in nonsynonymous rates is observed indicating that the genes in this region are diverging at different rates. This study indicates the utility and strength of large-scale cross-species sequence comparisons in the extraction of biological information from raw sequence, especially when combined with other computational tools such as GRAIL and BLAST.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes/genetics , Multigene Family , Amino Acid Sequence/genetics , Animals , Chromosome Mapping , Conserved Sequence , Humans , Mice , Molecular Sequence Data , Repetitive Sequences, Nucleic Acid , Sequence Alignment , Sequence Analysis, DNA
19.
Genome Res ; 7(4): 315-29, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9110171

ABSTRACT

Large-scale genomic DNA sequencing of orthologous and paralogous loci in different species should contribute to a basic understanding of the evolution of both the protein-coding regions and noncoding regulatory elements. We compared 93 kb of human sequence to 89 kb of mouse sequence in the Bruton's tyrosine kinase (BTK) region. In addition to showing the conservation of both position and orientation of the five functionally unrelated genes in the region (BTK, alpha-D-galactosidase A, L44L, FTP-3, and FCI-12), the comparison revealed conservation of clusters of noncoding sequence flanking the first exon of each gene. Furthermore, in the sequence comparison at the BTK locus, the conservation of clusters of noncoding sequence extends throughout the locus; the noncoding sequence is more highly conserved in the BTK locus in comparison to the flanking loci. This suggests a correlation with the complex developmental regulation of expression of btk. To determine whether a highly conserved 3.5-kb segment flanking the first exon of BTK contains transcriptional regulatory signals, we tested various portions of the segment for promoter and expression activity in several appropriate cell lines. The results demonstrate the contribution of the conserved region flanking the first exon to the cell lineage-specific expression pattern of btk. These data show the usefulness of large scale sequence comparisons to focus investigation on regions of noncoding sequence that play essential roles in complex gene regulation.


Subject(s)
Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA/methods , Sequence Homology, Nucleic Acid , Agammaglobulinaemia Tyrosine Kinase , Animals , Base Sequence , Conserved Sequence , Enhancer Elements, Genetic , Genetic Variation , Humans , Mice , Models, Genetic , Molecular Sequence Data , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repetitive Sequences, Nucleic Acid , Sequence Alignment , Transcription Factors/metabolism , Transcription, Genetic , Transfection , alpha-Galactosidase/genetics
20.
Genome Res ; 7(4): 353-8, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9110174

ABSTRACT

A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.


Subject(s)
DNA, Complementary/genetics , Proteins/genetics , Sequence Alignment/methods , Sequence Analysis, DNA/methods , DNA Transposable Elements , DNA, Complementary/chemistry , Databases, Factual , Gene Library , Humans , Molecular Sequence Data , Proteins/chemistry , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...