Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37109964

ABSTRACT

Biochar is a carbonaceous and porous material with limited adsorption capacity, which increases by modifying its surface. Many of the biochars modified with magnetic nanoparticles reported previously were obtained in two steps: first, the biomass was pyrolyzed, and then the modification was performed. In this research, a biochar with Fe3O4 particles was obtained during the pyrolysis process. Corn cob residues were used to obtain the biochar (i.e., BCM) and the magnetic one (i.e., BCMFe). The BCMFe biochar was synthesized by a chemical coprecipitation technique prior to the pyrolysis process. The biochars obtained were characterized to determine their physicochemical, surface, and structural properties. The characterization revealed a porous surface with a 1013.52 m2/g area for BCM and 903.67 m2/g for BCMFe. The pores were uniformly distributed, as observed in SEM images. BCMFe showed Fe3O4 particles on the surface with a spherical shape and a uniform distribution. According to FTIR analysis, the functional groups formed on the surface were aliphatic and carbonyl functional groups. Ash content in the biochar was 4.0% in BCM and 8.0% in BCMFe; the difference corresponded to the presence of inorganic elements. The TGA showed that BCM lost 93.8 wt% while BCMFe was more thermally stable due to the inorganic species on the biochar surface, with a weight loss of 78.6%. Both biochars were tested as adsorbent materials for methylene blue. BCM and BCMFe obtained a maximum adsorption capacity (qm) of 23.17 mg/g and 39.66 mg/g, respectively. The obtained biochars are promising materials for the efficient removal of organic pollutants.

2.
J Mater Sci Mater Med ; 24(4): 1035-41, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23392966

ABSTRACT

The aim of this study was to determine the biocompatibility and potential toxicity of apatite-coated magnetite nanoparticles. The in vitro biocompatibility with human red blood cells was evaluated, not hemolytic effects were found at concentrations lower than 3 mg/ml. For the in vivo study, Balb/c mice were used. The animals were injected intravenously or intraperitoneally, the doses ranged from 100 to 2,500 mg/Kg. All the injected animals showed normal kidney and liver function. No significant changes were found in the body weight, the organs weight and the iron levels in liver due to the administration. In conclusion, apatite-coated magnetite nanoparticles did not induce any abnormal clinical signs in the laboratory animals. The results demonstrated that apatite-coated magnetite nanoparticles of 8 ± 2 nm in size did not have hemolytic effect in human erythrocytes and did not cause apparent toxicity in Balb/c mice under the experimental conditions of this study.


Subject(s)
Antineoplastic Agents/administration & dosage , Apatites , Biocompatible Materials , Ferrosoferric Oxide , Nanoparticles , Animals , Female , Humans , Lethal Dose 50 , Male , Mice , Mice, Inbred BALB C , Organ Size/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...