Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Biomed Res ; 33(3): 208-216, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30249815

ABSTRACT

In this study, we sought to assess the safety and accuracy of sacropelvic fixation performed with image-guided sacroiliac screw placement using postoperative computed tomography and X-rays. The sacroiliac screws were placed with navigation in five patients. Intact specimens were mounted onto a six-degrees-of-freedom spine motion simulator. Long lumbosacral constructs using bilateral sacroiliac screws and bilateral S1 pedicle and iliac screws were tested in seven cadaveric spines. Nine sacroiliac screws were well-placed under an image guidance system (IGS); one was placed poorly without IGS with no symptoms. Both fixation techniques significantly reduced range of motion (P<0.05) at L5-S1. The research concluded that rigid lumbosacral fixation can be achieved with sacroiliac screws, and image guidance improves its safety and accuracy. This new technique of image-guided sacroiliac screw insertion should prove useful in many types of fusion to the sacrum, particularly for patients with poor bone quality, complicated anatomy, infection, previous failed fusion and iliac harvesting.

2.
Int J Spine Surg ; 12(1): 85-91, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30280088

ABSTRACT

BACKGROUND: Unilateral fractures involving complete separation of the lateral mass from the vertebra and lamina (floating lateral mass fractures) are a unique subset of cervical spine fractures. These injuries are at significant risk for displacement without operative fixation. Posterior fixation has proven to facilitate adequate fusion. However, there are few data supporting the clinical success of single-level anterior fixation. METHODS: Biomechanical evaluation of floating lateral mass fractures and a consecutive case series of patients with rotationally unstable floating lateral mass fractures treated with anterior fixation using an integrated cage-screw device with anterior plating (ICSD) was performed. The study comprised 7 fresh human cadaver cervical spines (C2-C7), and 11 patients with floating lateral mass fractures. Segmental flexibility testing evaluating axial rotation, flexion/extension, and lateral bending was performed in a cadaveric model after 2 types of single-level anterior fixation and 1 type of 2-level posterior fixation. Eleven patients with a floating lateral mass fracture of the cervical spine underwent anterior fixation with an ICSD. Radiographs and clinical outcomes were retrospectively reviewed. RESULTS: Compared with the intact condition, posterior instrumentation significantly (P < .05) reduced range of motion (ROM) in all 3 planes; anterior fixation with cervical plate and interbody spacer significantly reduced ROM in lateral bending only; and the ICSD significantly reduced ROM in flexion/extension and lateral bending. In the clinical arm, there were no long-term complications, subsidence >2 mm, failure of fixation, reoperation, pseudoarthrosis, or listhesis at final follow-up. CONCLUSIONS: The addition of 2 screws placed through a cervical cage can improve anterior fixation in a human cadaveric model of floating lateral mass fractures. Early clinical results demonstrate a low complication rate and a high rate of healing with single-level anterior fixation using this technique.

3.
Asian Spine J ; 11(6): 854-862, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29279739

ABSTRACT

STUDY DESIGN: In vitro biomechanical investigation. PURPOSE: To compare the biomechanics of integrated three-screw and four-screw anterior interbody spacer devices and traditional techniques for treatment of degenerative disc disease. OVERVIEW OF LITERATURE: Biomechanical literature describes investigations of operative techniques and integrated devices with four dual-stacked, diverging interbody screws; four alternating, converging screws through a polyether-ether-ketone (PEEK) spacer; and four converging screws threaded within the PEEK spacer. Conflicting reports on the stability of stand-alone devices and the influence of device design on biomechanics warrant investigation. METHODS: Fourteen cadaveric lumbar spines were divided randomly into two equal groups (n=7). Each spine was tested intact, after discectomy (injured), and with PEEK interbody spacer alone (S), anterior lumbar plate and spacer (AP+S), bilateral pedicle screws and spacer (BPS+S), circumferential fixation with spacer and anterior lumbar plate supplemented with BPS, and three-screw (SA3s) or four-screw (SA4s) integrated spacers. Constructs were tested in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Researchers performed one-way analysis of variance and independent t-testing (p≤0.05). RESULTS: Instrumented constructs showed significantly decreased motion compared with intact except the spacer-alone construct in FE and AR (p≤0.05). SA3s showed significantly decreased range of motion (ROM) compared with AP+S in LB (p≤0.05) and comparable ROM in FE and AR. The three-screw design increased stability in FE and LB with no significant differences between integrated spacers or between integrated spacers and BPS+S in all loading modes. CONCLUSIONS: Integrated spacers provided fixation statistically equivalent to traditional techniques. Comparison of three-screw and four-screw integrated anterior lumbar interbody fusion spacers revealed no significant differences, but the longer, larger-diameter interbody spacer with three-screw design increased stabilization in FE and LB; the diverging four-screw design showed marginal improvement during AR.

4.
Clin Biomech (Bristol, Avon) ; 43: 102-108, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28235698

ABSTRACT

BACKGROUND: Lateral lumbar interbody fusion is powerful for correcting degenerative conditions, yet sagittal correction remains limited by anterior longitudinal ligament tethering. Although lordosis has been restored via ligament release, biomechanical consequences remain unknown. Investigators examined radiographic and biomechanical of ligament release for restoration of lumbar lordosis. METHODS: Six fresh-frozen human cadaveric spines (L3-S1) were tested: (Miller et al., 1988) intact; (Battie et al., 1995) 8mm spacer with intact anterior longitudinal ligament; (Cho et al., 2013) 8mm spacer without intact ligament following ligament resection; (Galbusera et al., 2013) 13mm lateral lumbar interbody fusion; (Goldstein et al., 2001) integrated 13mm spacer. Focal lordosis and range of motion were assessed by applying pure moments in flexion-extension, lateral bending, and axial rotation. FINDINGS: Cadaveric radiographs showed significant improvement in lordosis correction following ligament resection (P<0.05). The 8mm spacer with ligament construct provided greatest stability relative to intact (P>0.05) but did little to restore lordosis. Ligament release significantly destabilized the spine relative to intact in all modes and 8mm with ligament in lateral bending and axial rotation (P<0.05). Integrated lateral lumbar interbody fusion following ligament resection did not significantly differ from intact or from 8mm with ligament in all testing modes (P>0.05). INTERPRETATION: Lordosis corrected by lateral lumbar interbody fusion can be improved by anterior longitudinal ligament resection, but significant construct instability and potential implant migration/dislodgment may result. This study shows that an added integrated lateral fixation system can significantly improve construct stability. Long-term multicenter studies are needed.


Subject(s)
Longitudinal Ligaments/surgery , Lordosis/surgery , Lumbar Vertebrae/surgery , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Spinal Fusion/instrumentation , Spinal Fusion/methods , Adult , Biomechanical Phenomena , Bone Plates , Cadaver , Humans , Lordosis/diagnostic imaging , Lordosis/physiopathology , Lumbar Vertebrae/physiopathology , Middle Aged , Radiography , Range of Motion, Articular
5.
Spine J ; 15(2): 322-8, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25264178

ABSTRACT

BACKGROUND CONTEXT: Lateral spacers (LSs) are the standard of care for a lateral lumbar interbody fusion. However, various types of fixation, such as bilateral pedicle screws (BPSs), unilateral pedicle screws (UPSs), bilateral facet screws (BFSs), and lateral plates (LPs) have been reported to increase the stability of LSs. The biomechanics of a novel lateral interbody implant, which is an interbody spacer with an integrated plate and two bone screws (lateral integrated plate-spacer [IPS-L]), has not been investigated yet. PURPOSE: To compare the biomechanical stability of IPS-L and LS with and without supplemental instrumentation. STUDY DESIGN: Human lumbar cadaveric study evaluating the biomechanical stability of an IPS-L. METHODS: Each of the six (L2-L5) spines was sequentially tested in intact; IPS-L; IPS-L+UPS; IPS-L+BPS; IPS-L+BFS; LS+BFS; LS+UPS; LS+BPS; LS; and LS+LP, using a load-control protocol in which a ±8 Nm moment was applied, for three cycles each, in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Data results were obtained from the third cycle. RESULTS: The IPS-L construct significantly reduced the range of motion (ROM) by 75% in FE, 70% in LB, and 57% in AR, compared with intact. Lateral integrated plate-spacer demonstrated similar biomechanical stability as LS+LP, and higher stability than the LS-alone construct, but the difference was not statistically significant. CONCLUSIONS: The IPS-L evaluated in the present study demonstrated equivalent biomechanical stability compared with standard lateral interbody fusion constructs. The addition of BPSs to the IPS-L showed significant reduction in ROM in FE, and the addition of BFSs showed significant reduction in ROM in FE and AR, compared with the integrated plate-spacer alone construct. The IPS-L with supplemental fixation may be a viable option for lateral interbody fusion. Long-term clinical studies are further required to confirm these results.


Subject(s)
Bone Plates , Lumbar Vertebrae/surgery , Pedicle Screws , Spinal Fusion/instrumentation , Biomechanical Phenomena/physiology , Humans , Lumbosacral Region/surgery , Range of Motion, Articular/physiology , Spinal Fusion/methods , Spine/surgery
6.
Adv Orthop ; 2013: 738252, 2013.
Article in English | MEDLINE | ID: mdl-23691332

ABSTRACT

Conventional posterior dynamic stabilization devices demonstrated a tendency towards highly rigid stabilization approximating that of titanium rods in flexion. In extension, they excessively offload the index segment, making the device as the sole load-bearing structure, with concerns of device failure. The goal of this study was to compare the kinematics and intradiscal pressure of monosegmental stabilization utilizing a new device that incorporates both a flexion and extension dampening spacer to that of rigid internal fixation and a conventional posterior dynamic stabilization device. The hypothesis was the new device would minimize the overloading of adjacent levels compared to rigid and conventional devices which can only bend but not stretch. The biomechanics were compared following injury in a human cadaveric lumbosacral spine under simulated physiological loading conditions. The stabilization with the new posterior dynamic stabilization device significantly reduced motion uniformly in all loading directions, but less so than rigid fixation. The evaluation of adjacent level motion and pressure showed some benefit of the new device when compared to rigid fixation. Posterior dynamic stabilization designs which both bend and stretch showed improved kinematic and load-sharing properties when compared to rigid fixation and when indirectly compared to existing conventional devices without a bumper.

7.
Neurosurgery ; 72(2): 300-8; discussion 308-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23149951

ABSTRACT

BACKGROUND: Spinal metastases of the second cervical vertebra are a subset of tumors that are particularly difficult to address surgically. Previously described techniques require highly morbid circumferential dissection posterior to the pharynx for resection and reconstruction. OBJECTIVE: To perform a biomechanical analysis of instrumented reconstruction configurations used after axial spondylectomy and to demonstrate safe use of a novel construct in a patient case report. METHODS: Several different published and novel reconstruction configurations were inserted into 7 occipitocervical spines that underwent axial spondylectomy. A biomechanical analysis of the stiffness of the constructs in flexion and extension, lateral bending, and rotation was performed. A patient then underwent a posterior-only approach for axial spondylectomy and circumferential reconstruction. RESULTS: Biomechanical analysis of different constructs demonstrated that anterior column reconstruction with bilateral cages spanning the C1 lateral mass to the C3 facet in combination with occipitocervical instrumentation was superior in flexion-extension and equivalent in lateral bending and rotation to currently used constructs. The patient in whom this construct was placed via a posterior-only approach for axial spondylectomy and instrumentation remained at neurological baseline and demonstrated no recurrence of local disease or failure of instrumentation to date. CONCLUSION: When C1 lateral mass to C3 facet bilateral cage plus occipitocervical instrumentation is compared with existing anterior and posterior constructs, this novel reconstruction is biomechanically equivalent if not superior in performance. In a patient, the posterior-only approach for C2 spondylectomy with the novel reconstruction was safe and durable and avoided the morbidity of the anterior approach.


Subject(s)
Bone Neoplasms/surgery , Internal Fixators , Plastic Surgery Procedures/methods , Sarcoma, Ewing/surgery , Adult , Aged , Biomechanical Phenomena , Bone Neoplasms/secondary , Cadaver , Decompression, Surgical , Female , Humans , Male , Middle Aged , Sarcoma, Ewing/secondary , Spinal Cord/diagnostic imaging , Spinal Cord/surgery , Tomography, X-Ray Computed
8.
Clin Biomech (Bristol, Avon) ; 27(6): 532-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22244511

ABSTRACT

BACKGROUND: Integrated plate-spacer may provide adequate construct stability while potentially lowering operative time, decreasing complications, and providing less mechanical obstruction. The purpose of the current study was to compare the biomechanical stability of an anatomically profiled 2-screw integrated plate-spacer to a traditional spacer only and to a spacer and anterior cervical plate construct. In addition, the biomechanical stability of 2-screw integrated plate-spacer was compared to a commercially available 4-screw integrated plate-spacer. METHODS: Two groups, each of nine cervical cadaver spines (C2-C7), were tested under pure moments of 1.5Nm. Range of motion was recorded at C5-C6 in all loading conditions (flexion, extension, lateral bending, and axial rotation) for the following constructs: 1) Intact; 2) 2-screw or 4-screw integrated plate-spacer; 3) spacer and anterior cervical plate; and 4) spacer only. FINDINGS: All fusion constructs significantly reduced motion compared to the intact condition. Within the instrumented constructs, spacer and anterior cervical plate, 2-screw and 4-screw integrated plate-spacer resulted in reduced motion compared to the spacer only construct. No significant differences were found in motion between any of the instrumented conditions in any of the loading conditions. INTERPRETATION: The application of integrated plate-spacer for anterior cervical discectomy and fusion is based on several factors including surgical ease-of-use, biomechanical characteristics, and surgeon preference. The study suggests that integrated plate-spacer provide biomechanical stability comparable to traditional spacer and plate constructs in the cervical spine. Clinical studies on integrated plate spacer devices are necessary to understand the performance of these devices in vivo.


Subject(s)
Biomechanical Phenomena , Cervical Vertebrae/surgery , Internal Fixators , Aged , Aged, 80 and over , Bone Plates , Bone Screws , Cadaver , Equipment Design , Female , Humans , In Vitro Techniques , Male , Middle Aged , Range of Motion, Articular , Spinal Fusion/methods , Stress, Mechanical
9.
Spine (Phila Pa 1976) ; 37(1): E16-22, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21540778

ABSTRACT

STUDY DESIGN: The effect of long, rigid fixation on adjacent level hypermobility was investigated in a human cadaver model with and without a transitional posterior dynamic stabilization (PDS) device placed at the last caudal level. OBJECTIVE: To evaluate if PDS devices are useful in the setting of spinal deformities to restore increased adjacent level motions, which occur in long constructs. The hypothesis is that load-sharing benefits of these devices will be most suitable in long constructs and may reduce thoracolumbar junctional effects. The PDS device evaluated has a compressive spacer and flexion-dampening bumper. SUMMARY OF BACKGROUND DATA: Mechanical factors such as excessive mobility, increased disc height due to instrumentation, and abnormal loading are thought to accentuate distal level problems, which occur in extended instrumentation. Specifically adjacent level degeneration and distal junctional kyphosis are known to occur in these cases. METHODS: Seven cadaver spines were tested from T7 to L3. Long instrumentation was applied in 2 rigid groups, R1: Rigid (T8-L2) and R2: Rigid (T8-L1), and PDS to the last caudal level of each, RP1: Rigid (T8-L1) + PDS (L1-L2), and RP2: Rigid (T8-T12) + PDS (T12-L1). Range of motion was evaluated at surgical and distal adjacent levels after displacement controlled loading in a spine tester. RESULTS: Distal adjacent level motion was increased after 5- and 6-level rigid fixation in flexion-extension, lateral bending, and axial rotation. Most of the increases were seen in axial rotation and lateral bending. Replacing the last caudal instrumented level with the PDS test device was able to alleviate hypermobile conditions of the adjacent noninstrumented level, closer to intact (24%, 12% reduction in RP2, RP1, respectively). CONCLUSION: Reduction of hypermobility caused by extended arthrodesis may represent a new and ideally suited function for PDS devices. Mechanically, the devices were seen to kinematically restore abnormal distal motion, especially with placement of the PDS at the thoracolumbar junction.


Subject(s)
Lumbar Vertebrae/physiology , Prostheses and Implants , Spinal Fusion/instrumentation , Thoracic Vertebrae/physiology , Zygapophyseal Joint/physiology , Biomechanical Phenomena , Cadaver , Humans , Implants, Experimental , Intervertebral Disc/physiology , Joint Instability , Models, Anatomic , Range of Motion, Articular/physiology , Scoliosis , Spinal Fusion/methods , Stress, Mechanical , Weight-Bearing
10.
Clin Biomech (Bristol, Avon) ; 27(1): 84-90, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21824696

ABSTRACT

BACKGROUND: Anterior cervical plate fixation has gained widespread acceptance for treatment of cervical spine pathologies by stabilizing the segment and enhancing fusion rates. While it is generally accepted that multiple fusion levels benefit from plating, few studies have compared plate designs. Wider plates can increase surgical complications and cost and are, therefore, not indicated unless biomechanical benefits exist. In this study, a cervical cadaver model is subjected to physiological loads and stabilized with in-line one-screw, and traditional two-screw per vertebral body plates. METHODS: Three groups of eight fresh frozen human cadaver cervical spines (C2-C7) were tested by applying pure moments of 1.5 Nm. Motion was obtained at C5-C6, and C4-C5/C5-C6 for single-level and bi-level experiments, respectively, in flexion-extension, lateral bending and axial rotation. Specimens were tested, 1) intact, 2) injured (anterior discectomy), 3) with interbody fusion spacer, 4) in-line one-screw plate+spacer, and 5) two-screw plate+spacer, using four available plate brands. FINDINGS: Single-level plating with interbody spacer restricted range-of-motion with respect to the spacer-alone construct in flexion-extension, regardless of one-screw or two-screw plate design, or brand. Similar behavior was seen in axial rotation, but not in lateral bending, where significance reductions in motion were achieved only with respect to the intact spine, not the interbody spacer group. In bi-level experiments all plate types restricted range-of-motion below spacer-alone levels in all loading modes. INTERPRETATION: Anterior plating should be selected based on surgical requirements, as a wide (two-screw) over a narrow (one-screw) plating profile does not appear to provide a tangible biomechanical benefit.


Subject(s)
Bone Plates , Cervical Vertebrae/physiopathology , Cervical Vertebrae/surgery , Spinal Fusion/instrumentation , Zygapophyseal Joint/physiopathology , Zygapophyseal Joint/surgery , Cadaver , Humans , Range of Motion, Articular , Spinal Fusion/methods , Treatment Outcome
11.
World Neurosurg ; 77(2): 357-61, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22120349

ABSTRACT

OBJECTIVE: The aim of the current study was to investigate the biomechanical stability and fixation strength provided by a posterior approach reconstruction technique to realign the craniovertebral junction. METHODS: We tested seven human cadaver occipito-cervical spines (occiput-C4) by applying pure moments of ± 1.5 Nm on a spine tester. Each specimen was tested in the following modes: 1) intact; 2) injured; 3) spacers alone at C1-C2 articulation (S); 4) spacers plus C1-C2 Posterior Instrumentation (S+PI); and 5) spacers plus C1-C2 posterior instrumentation plus midline wiring (S+PI+MLW). C1-C2 range of motion for each construct was obtained in flexion-extension, lateral bending, and axial rotation. RESULTS: In all the loading modes, S, S+PI, and S+PI+MLW constructs significantly reduced range of motion compared with the intact and injured condition (P < 0.05). There was no statistical difference between any of the three instrumentation constructs (P > 0.05). CONCLUSIONS: This study investigated the biomechanics of the posterior approach technique for realignment of the craniovertebral junction and also made comparisons with additional posterior fixations. The stand-alone spacers were stable in all three loading modes. Posterior instrumentation increased the stability as compared to stand-alone spacers. The third point of fixation, carried out by using midline wiring, increased the stability further. However, there was not much difference in the stability imparted with the midline wiring versus without. The present study highlights the biomechanics of this novel concept and reaffirms the view that distraction of the C1-C2 articular facets and direct articular joint atlantoaxial fixation would be an ideal method of management of basilar invagination.


Subject(s)
Atlanto-Axial Joint/surgery , Atlanto-Occipital Joint/surgery , Fracture Fixation/methods , Neurosurgical Procedures/methods , Atlanto-Axial Joint/pathology , Atlanto-Occipital Joint/pathology , Biomechanical Phenomena , Cadaver , Female , Humans , Internal Fixators , Male , Middle Aged , Range of Motion, Articular , Tomography, X-Ray Computed
12.
Clin Biomech (Bristol, Avon) ; 27(1): 64-70, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21849224

ABSTRACT

BACKGROUND: Transfacet pedicle screws are scarcely used in primary posterior fixation, and have limited use unilaterally or with existing anterior instrumentation. Nevertheless, the incomplete literature suggests equivalent or better performance of ipsilateral, bilateral, facet screws compared to bilateral pedicle screws. METHODS: Two groups of seven human cadaver spines (L3-S1) were tested under pure moments of 6 Nm. Each specimen was tested in a primary and circumferential fixation (Spacer, Spacer+Plate) environment. Both transfacet and bilateral pedicle screws were used as posterior fixation, in separate groups. Motion was obtained at L4-L5 for single-level constructs in flexion-extension, lateral bending and axial rotation modes. FINDINGS: In primary fixation, both transfacet and bilateral pedicle screws reduced motion below intact levels. Statistically, the level of circumferential fixation (anterior, posterior, or both) proved to be more influential than the type of posterior fixation. Incorporating a spacer and plate with pedicle screws provided a greater relative gain in stability than with facet screws. The interpretation is explained through a model describing the location of fixation with respect to the center-of-rotation of the vertebral bodies. In lateral bending and axial rotation, bilateral pedicle screw constructs were stiffer than transfacet pedicle screw constructs as a trend. INTERPRETATION: Transfacet pedicle screws provided similar fixation to bilateral pedicle screws in primary and circumferential fixations during flexion-extension. In the other modes, transfacet screw rigidity is, on average, less than bilateral pedicle screws when used alone, but with the addition of other anterior instrumentation the differences are minimized. Therefore, facet screws are warranted based on the surgical effect desired, and in the presence of additional anterior fixation.


Subject(s)
Bone Screws , Joint Instability/physiopathology , Joint Instability/surgery , Lumbar Vertebrae/physiopathology , Lumbar Vertebrae/surgery , Spinal Fusion/instrumentation , Zygapophyseal Joint/physiopathology , Cadaver , Equipment Design , Equipment Failure Analysis , Humans , Range of Motion, Articular , Spinal Fusion/methods , Treatment Outcome , Zygapophyseal Joint/surgery
13.
Spine J ; 11(9): 863-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21802998

ABSTRACT

BACKGROUND CONTEXT: Spinal fusion is a commonly performed surgical procedure. It is used to treat a variety of spinal pathologies, including degenerative disease, trauma, spondylolisthesis, and deformities. A mechanically stable spine provides an ideal environment for the formation of a fusion mass. Instrumented spinal fusion allows early ambulation with minimal need for a postoperative external immobilizer. Several biomechanical and clinical studies have evaluated the stability offered by different posterior instrumentation techniques and the effects of reduced instrumentation. PURPOSE: The aim of the study was to compare the biomechanics of a novel pedicle and translaminar facet screw (TLFS) construct. Also, in this study, comparisons were made with the more common pedicle screw/TLFS constructs for posterior fixation. STUDY DESIGN: Human cadaveric lumbar spines were tested in an in vitro flexibility experiment to investigate the biomechanical stability provided by a novel pedicle and TLFS construct after transforaminal lumbar interbody fusion (TLIF). METHODS: Seven fresh human lumbar spines (L2-L5) were tested by applying pure moments of ±8 Nm. After intact specimen testing, a left-sided TLIF with a radiolucent interbody spacer was performed at L3-L4. Each specimen was then tested for the following constructs: bilateral pedicle screws (BPS) and rods at L3-L4; unilateral pedicle screws (UPS) and rods at L3-L4; UPS and rods and TLFS at L3-L4 (UPS+TLFS); and unilateral single pedicle screw and TLFS and rod at L3-L4 (V construct). The L3-L4 range of motion (ROM) and stiffness for each construct were obtained by applying pure moments in flexion, extension, lateral bending, and axial rotation. RESULTS: All instrumented constructs significantly reduced ROM in flexion-extension and lateral bending compared with the intact specimen. In axial rotation, only BPS constructs significantly reduced ROM compared with intact specimen. The V construct was able to achieve more reduction in ROM compared with UPS construct and was comparable to UPS+TLFS construct. Unilateral pedicle screws construct was the least stable in all loading modes and was significantly different than BPS construct in lateral bending. CONCLUSIONS: The V construct exhibited enhanced stability compared with UPS construct in all loading modes. It provides bilateral fixation and preserves the anatomic integrity of the superior facet joint. The novel construct may offer advantages of less invasiveness, significant reduction in operation time, duration of hospitalization, and costs of implants, which would require further clinical evaluation.


Subject(s)
Bone Screws , Range of Motion, Articular , Spinal Fusion/instrumentation , Biomechanical Phenomena , Cadaver , Female , Humans , In Vitro Techniques , Lumbar Vertebrae , Male , Middle Aged , Spinal Fusion/methods , Spine/surgery
14.
Spine (Phila Pa 1976) ; 36(13): 1017-21, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21224772

ABSTRACT

STUDY DESIGN: Human cadaveric ilio-lumbosacral spines were tested in an in vitro biomechanical flexibility experiment to investigate the biomechanical stability provided by four different types of spinal reconstruction techniques after spondylectomy of the L5 vertebral body. OBJECTIVE: To compare the biomechanical stability provided by four reconstruction methods after L5 spondylectomy. SUMMARY OF BACKGROUND DATA: Clinical studies have shown that total spondylectomy of the L5 vertebral body presents a challenging scenario for spinal reconstruction. Biomechanical studies on spinal reconstruction after total spondylectomy have been performed at the thoracolumbar junction. However, there have been no biomechanical studies after L5 spondylectomy. METHODS: Seven cadaveric lumbosacral spines (L2-S1) with intact ilium were used. After intact testing, spondylectomy of the L5 vertebra was performed and the spine was reconstructed using an expandable cage for anterior column support. Supplementary fixation was performed as a sequential order of: (1) bilateral pedicle screws at L4-S1 (SP), (2) anterior plate and bilateral pedicle screws at L4-S1 (ASP), (3) bilateral pedicle screws at L3-S1 and iliac screws (MP), and (4) anterior plate at L4-S1, bilateral pedicle screws at L3-S1 and iliac screws (AMP). Range of motion (ROM) for each construct was obtained by applying pure moments in flexion, extension, lateral bending, and axial rotation. RESULTS: In flexion, extension and lateral bending all the instrumented constructs significantly decreased (P < 0.05) the range of motion (ROM) compared to intact. In axial rotation, only the circumferential support constructs (ASP, AMP) provided significantly decreased (P < 0.05) ROM, whereas posterior instrumentations alone (SP, MP) were comparable to intact spines. CONCLUSION: After L5 spondylectomy, the L4-S1 cage with posterior short segment instrumentation provides stability in lateral bending that is not further increased by adding L3 pedicle-iliac screws and L4-S1 anterior plate. However, an anterior L4-S1 plate provides additional stability in flexion, extension, and axial rotation.


Subject(s)
Bone Plates , Bone Screws , Intervertebral Disc/surgery , Joint Instability/prevention & control , Lumbar Vertebrae/surgery , Orthopedic Procedures/instrumentation , Osteotomy , Sacrum/surgery , Biomechanical Phenomena , Cadaver , Female , Humans , Intervertebral Disc/diagnostic imaging , Joint Instability/diagnostic imaging , Joint Instability/etiology , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Orthopedic Procedures/adverse effects , Osteotomy/adverse effects , Prosthesis Design , Radiography , Range of Motion, Articular , Rotation , Sacrum/diagnostic imaging
15.
Spine J ; 11(1): 30-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20965790

ABSTRACT

BACKGROUND CONTEXT: Occipitocervical (OC) spinal instrumentation involving the axis (C2) entails the use of transarticular screws through C1-C2 or lateral mass screws at C1 and pedicle screws at C2 to achieve fusion. Because of the anatomical complexity, interpatient anomalous variation, and danger to the vertebral artery injury, there has been an increased interest in alternate sites for fixation. Recent studies have involved the placement of screws bilaterally into the C2 lamina. Several biomechanical studies have been carried out to evaluate the performance of C2 translaminar screws (TLSs). PURPOSE: The aim of the study was to compare the biomechanics of an OC2 rigid construct using C2 pedicle screws and C2 TLSs. Also, this study included a new construct in which the OC2 fixation was carried out by connecting rods to the contralateral TLS. STUDY DESIGN: Human cadaveric cervical spines were tested in an in vitro biomechanical flexibility experiment to investigate the biomechanical stability provided by a novel crossed rod (CR) configuration incorporating TLSs for OC2 internal fixation. METHODS: Seven fresh human cadaver occipitocervical spines (occiput-C3) were tested by applying pure moments of ±1.5 Nm. After intact specimen testing, an occipital plate was implanted. Each specimen was then tested in the following modes: bilateral pedicle screws (BPSs) and rods at C2; TLSs at C2 with rods in parallel configuration (TLS+parallel rod); and TLSs at C2 with rods in crossed configuration (TLS+CR). OC2 range of motion (ROM) for each construct was obtained by applying pure moments in flexion-extension, lateral bending, and axial rotation. RESULTS: All three instrumented constructs significantly reduced ROM in all physiological planes when compared with the intact spine. The BPS construct similarly reduced ROM when compared with both the translaminar constructs. There was no significant difference in ROM between the translaminar constructs in all loading modes. CONCLUSIONS: A cadaveric model was used to investigate the stability offered by a novel CR construct by using TLS fixation in an OC2 fusion construct. The results were compared with BPS fixation. All three constructs significantly decreased motion as compared with the intact state. There was no statistically significant difference in flexibility among any of the constructs. The novel CR construct provides as much stability as traditional constructs and may be a viable alternative for clinical use.


Subject(s)
Cervical Vertebrae/surgery , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Atlanto-Axial Joint/physiology , Atlanto-Axial Joint/surgery , Biomechanical Phenomena/physiology , Bone Screws , Humans , Internal Fixators , Range of Motion, Articular/physiology , Spinal Fusion/instrumentation , Spinal Fusion/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...