Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Horm Behav ; 81: 97-105, 2016 05.
Article in English | MEDLINE | ID: mdl-27059527

ABSTRACT

The translational assessment of mechanisms underlying cognitive functions using touchscreen-based approaches for rodents is growing in popularity. In these paradigms, daily training is usually accompanied by extended food restriction to maintain animals' motivation to respond for rewards. Here, we show a transient elevation in stress hormone levels due to food restriction and touchscreen training, with subsequent adaptation effects, in fecal corticosterone metabolite concentrations, indicating effective coping in response to physical and psychological stressors. Corticosterone concentrations of experienced but training-deprived mice revealed a potential anticipation of task exposure, indicating a possible temporary environmental enrichment-like effect caused by cognitive challenge. Furthermore, the analyses of immediate early gene (IEG) immunoreactivity in the hippocampus revealed alterations in Arc, c-Fos and zif268 expression immediately following training. In addition, BDNF expression was altered as a function of satiation state during food restriction. These findings suggest that standard protocols for touchscreen-based training induce changes in hippocampal neuronal activity related to satiation and learning that should be considered when using this paradigm.


Subject(s)
Adrenal Glands/metabolism , Caloric Restriction/psychology , Conditioning, Psychological/physiology , Neurons/metabolism , Reward , Touch , Adaptation, Psychological/physiology , Animals , Caloric Restriction/veterinary , Corticosterone/metabolism , Environmental Exposure , Hippocampus/metabolism , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , RNA, Messenger/metabolism
2.
Front Behav Neurosci ; 8: 154, 2014.
Article in English | MEDLINE | ID: mdl-24834036

ABSTRACT

The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved "ongoing" and cued "switch" trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the "ongoing" baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

SELECTION OF CITATIONS
SEARCH DETAIL
...