Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol Endocrinol ; 20(1): 109, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906658

ABSTRACT

Early pregnancy is marked by placentation and embryogenesis, which take place under physiological low oxygen concentrations. This oxygen condition is crucial for many aspects of placentation, trophoblast function, vascularization and immune function. Recently, a new family of innate lymphoid cells has been found to be expressed at the fetomaternal interface. Among these, type 3 innate lymphoid cells (ILC3) are important antigen presenting cells in the context of MHC-II. The expression of MHC-II on ILC3s during pregnancy is reduced. We tested the hypothesis that low oxygen concentrations reduce the potential of ILC3s to present antigens promoting fetal tolerance.Using an in vitro approach, NCR+ ILC3s generated from cord blood stem cell precursors were incubated under different O2 concentrations in the presence or absence of the pregnancy-related hormones hCG and TGF-ß1. The expression of MHC-II, accessory molecules and an activation marker were assessed by flow cytometry. We observed that 1% O2 reduced the expression of the MHC-II molecule HLA-DR as compared to 21% O2 and modulated the relative effects of hCG and TGF-ß1.Our data indicate that low oxygen concentrations reduce the antigen presentation potential of NCR+ ILC3s and suggest that it may promote fetal tolerance during the first trimester of pregnancy.


Subject(s)
Antigen Presentation , Lymphocytes , Female , Hormones/metabolism , Humans , Immunity, Innate , Lymphocytes/metabolism , Oxygen/metabolism , Oxygen/pharmacology , Pregnancy , Transforming Growth Factor beta1/metabolism
2.
Front Immunol ; 12: 698045, 2021.
Article in English | MEDLINE | ID: mdl-34531854

ABSTRACT

Pregnancy success depends greatly on a balanced immune homeostasis. The detection of bacterial components in the upper reproductive tract in non-pregnant and pregnant women raised questions on its possible beneficial role in reproductive health. The local conditions that allow the presence of bacteria to harmonize with the establishment of pregnancy are still unknown. Among the described bacterial species in endometrial and placental samples, Fusobacterium nucleatum was found. It has been observed that F. nucleatum can induce tumorigenesis in colon carcinoma, a process that shares several features with embryo implantation. We propose that low concentrations of F. nucleatum may improve trophoblast function without exerting destructive responses. Inactivated F. nucleatum and E. coli were incubated with the trophoblastic cell lines HTR8/SVneo, BeWo, and JEG-3. Viability, proliferation, migratory capacity, invasiveness and the secretion of chemokines, other cytokines and matrix metalloproteinases were assessed. The presence of F. nucleatum significantly induced HTR8/SVneo invasion, accompanied by the secretion of soluble mediators (CXCL1, IL-6 and IL-8) and metalloproteinases (MMP-2 and MMP-9). However, as concentrations of F. nucleatum increased, these did not improve invasiveness, hindered migration, reduced cell viability and induced alterations in the cell cycle. Part of the F. nucleatum effects on cytokine release were reverted with the addition of a TLR4 blocking antibody. Other effects correlated with the level of expression of E-cadherin on the different cell lines tested. Low amounts of F. nucleatum promote invasion of HTR8/SVneo cells and induce the secretion of important mediators for pregnancy establishment. Some effects were independent of LPS and correlated with the expression of E-cadherin on trophoblasts.


Subject(s)
Fusobacterium nucleatum , Pregnancy , Trophoblasts , Cell Line , Female , Humans , In Vitro Techniques
3.
Front Immunol ; 11: 446, 2020.
Article in English | MEDLINE | ID: mdl-32292403

ABSTRACT

Interleukin-33 (IL-33) is a mucosal alarmin belonging to the IL-1 cytokine family and is now recognized to have a key role in innate and adaptive immunity, contributing to tissue homeostasis and response to environmental stresses. In addition, IL-33 has also been shown to work as a positive regulator that initiates and maintains a Th2 immune response. In the context of pregnancy, it has been recently demonstrated that upon certain stress conditions, such as an infection induced inflammation, IL-33 is released from the uterine mucosa and triggers decidual B cells to produce anti-inflammatory molecules, which in turn restore immune homeostasis and prevents the development of preterm birth. In this study we therefore performed a detailed characterization of IL-33 receptor (Il1rl1 or ST2) expression in B cells during normal pregnancy, as well as in a mouse model of preterm birth. We observed that splenic B cells significantly up-regulate the expression of Il1rl1 during pregnancy and identified the B1 B cell population as the main ST2-expressing B cell subset. A further kinetic analysis showed that percentages of ST2-expressing B1 B cells are significantly augmented on days 12 and 14 of pregnancy, both in the spleen and peritoneal cavity of pregnant mice, and then drop toward the end of pregnancy to the levels observed in non-pregnant animals. Furthermore, using a mouse model of LPS-induced preterm birth, we demonstrated that not only are the percentages of ST2-expressing B1 B cells significantly enlarged in the spleen during the acute phase of preterm birth, but decidual B cells also significantly up-regulate ST2 expression as compared to term-pregnant mice. Overall, our results suggest a functional role of ST2 expression in B cells during pregnancy and reinforce the importance of the IL-33/ST2 axis in B cells as a critical mechanism to control inflammation-induced preterm birth.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Pregnancy/immunology , Premature Birth/immunology , Acute Disease , Animals , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Male , Mice , Mice, Inbred C57BL , Up-Regulation
4.
Reproduction ; 160(1): 155-169, 2020 07.
Article in English | MEDLINE | ID: mdl-32130203

ABSTRACT

Strategically located in mucosal barriers, innate lymphoid cells (ILCs) are relevant in local containment and tolerance of commensal microflora. ILCs have been recently described at the fetomaternal interface, where the development of a semi-allogeneic fetus can only succeed in a well-controlled immune environment. We postulate that ILCs adapt their antigen presentation capacity to protect pregnancy from excessive immune responses. Human ILCs were studied in deciduae of term pregnancies, peripheral blood and in in vitro generated ILCs. Fresh isolated lymphocytes or cells treated with pregnancy-related factors were investigated. The fetal antigen rejection-based CBA/J × DBA/2J mouse model (poor outcome pregnant mice; POPM) was used to characterize ILC antigen presentation potential in normal and immunologically disturbed pregnancies. ILC antigen presentation potential was characterized by flow cytometry and qPCR. We discovered that the distribution of ILC subsets changed during both human and murine pregnancy. Moreover, the pregnancy was accompanied by reduced MHCII expression in splenic ILCs during normal pregnancy (CBA/J × BALB/c; good outcome pregnant mice; GOPM) but increased in splenic and intestinal ILCs of CBA/J × DBA/2J mice. In vitro, splenic ILCs from pregnant mice increased MHCII expression after stimulation with IL-1ß and IL-23. In contrast, uterine ILCs displayed lower MHCII expression, which remained unchanged after stimulation. Finally, pregnancy-related factors and hormones present in the uterine environment reduced antigen presentation potential of human ILCs in vitro. Together, these data indicate that, during pregnancy, peripheral and especially uterine ILCs adapt their antigen presenting potential to maintain a level of tolerance and support pregnancy.


Subject(s)
Antigen Presentation/immunology , Fetus/immunology , Hormones/pharmacology , Immune Tolerance/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Animals , Antigen Presentation/drug effects , Female , Fetus/drug effects , Humans , Immune Tolerance/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred CBA , Mice, Inbred DBA , Pregnancy
5.
Reproduction ; 159(3): 351-359, 2020 03.
Article in English | MEDLINE | ID: mdl-31940277

ABSTRACT

A favorable outcome of pregnancy depends greatly on an adequate balance of immune protection and fetal tolerance at the fetomaternal interface. IL-21 is a pro-inflammatory cytokine associated with altering immune responses in autoimmune diseases. IL-21 has pleiotropic functions, including induction of Th17 T cells, inhibition of Treg development, and modulation of antibody responses of B lymphocytes. Genetic polymorphisms of IL21 have been associated to poor pregnancy outcomes. However, the mechanism of IL-21 actions needs further evaluation. Here, we postulate that IL-21 affects splenic B cell function during pregnancy and shapes immune responses. We show that splenic B cells from CBA/J × BALB/c mice with favorable pregnancy outcome expressed lower IL21R levels than in CBA/J × DBA/2J mice, a mouse model for immune-induced bad pregnancy outcome. As a consequence, B cells from CBA/J × BALB/c mice reacted less sensitively to IL-21 than B cells from non-pregnant mice (NPM) or from CBA/J × DBA/2J mice. Also, LPS-induced apoptotic rates were altered in NPM and CBA/J × DBA/2J but not in CBA/J × BALB/c mice. This is accompanied by improved survival of B cells that produce the anti-inflammatory cytokine IL-10 upon stimulation with LPS. We also observed lower numbers of CD4+CXCR5+Bcl-6+ follicular T-helper cells (Tfh) in normal pregnant mice, compared to non-pregnant and mice with disturbed pregnancies. Our data indicate that alterations of the Tfh/IL-21/IL-10 axis may have important influence on pregnancy outcome.


Subject(s)
B-Lymphocytes/metabolism , Interleukin-10/metabolism , Interleukins/physiology , Pregnancy, Animal/immunology , Spleen/immunology , Animals , Female , Mice, Inbred CBA , Mice, Inbred DBA , Pregnancy , T-Lymphocytes, Helper-Inducer/metabolism
6.
Reproduction ; 158(4): 323-333, 2019 10.
Article in English | MEDLINE | ID: mdl-31426030

ABSTRACT

Alterations in the immunologic balance during pregnancy have been associated with poor pregnancy outcomes. The underlying mechanisms are complex and mouse models delivered valuable information on inflammatory imbalance in disturbed pregnancies and served as model to test potential anti-inflammatory therapies. CD83 is a transmembrane protein (mCD83) with a soluble form (sCD83) which possesses strong anti-inflammatory properties. During murine pregnancy, upregulated mCD83 expression induces sCD83 release after in vitro stimulation with LPS, phorbol myristate acetate (PMA) and ionomycin. The release mechanism of sCD83 and its control are yet to be elucidated. In this study, the expression of mCD83 and sCD83 has been extensively studied in the CBA/J × DBA/2J mouse model of pro-inflammatory-mediated pregnancy disturbances. mCD83 was higher expressed on splenic B cells, uterus-draining lymph nodes T cells and dendritic cells from mice with poor pregnancy outcome (PPOM) compared to mice with good pregnancy outcome (GPOM). PPOM, however, was accompanied by lower sCD83 serum levels. In vitro treatment of splenic B cells with progesterone led to a reduction of TIMP1 expression, mCD83 expression and sCD83 release, while TIMP1 treatment had a positive effect on sCD83 availability. These results suggest that tissue and matrix components are involved in the regulation of CD83 in murine pro-inflammatory pregnancies.


Subject(s)
Antigens, CD/metabolism , Gene Expression Regulation, Developmental , Immunoglobulins/metabolism , Inflammation/physiopathology , Membrane Glycoproteins/metabolism , Pregnancy Complications/metabolism , Animals , Antigens, CD/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Immunoglobulins/genetics , Membrane Glycoproteins/genetics , Mice , Mice, Inbred CBA , Mice, Inbred DBA , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , CD83 Antigen
7.
Reprod Biol ; 19(2): 113-118, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31023521

ABSTRACT

Contrary to the traditional assumption of a sterile uterus, the number of studies characterizing microbial entities in the healthy upper reproductive tract (endometrial cavity, including follicular fluid and placenta) have been on the increase. Substantial data has been accumulated correlating microbial composition with fertility outcome. In this context, the presence of certain taxa was associated to an improved reproductive success. A summarization for the evidence of these molecular mechanisms through which bacteria may affect developmental processes during pregnancy is presented and discussed with special focus placed upon the immunological aspects.


Subject(s)
Amniotic Fluid/microbiology , Bacteria/isolation & purification , Microbiota , Placenta/microbiology , Uterus/microbiology , Bacteria/classification , Female , Humans , Pregnancy
8.
Front Immunol ; 8: 486, 2017.
Article in English | MEDLINE | ID: mdl-28491062

ABSTRACT

For the normal development of pregnancy, a balance between immune tolerance and defense is crucial. However, the mechanisms mediating such a balance are not fully understood. CD83 is a transmembrane protein whose expression has been linked to anti-inflammatory functions of T and B cells. The soluble form of CD83, released by cleavage of the membrane-bound protein, has strong anti-inflammatory properties and was successfully tested in different mouse models. It is assumed that this molecule contributes to the establishment of immune tolerance. Therefore, we postulated that the expression of CD83 is crucial for immune tolerance during pregnancy in mice. Here, we demonstrated that the membrane-bound form of CD83 was upregulated in T and B cells during allogeneic murine pregnancies. An upregulation was also evident in the main splenic B cell subtypes: marginal zone, follicular zone, and transitional B cells. We also showed that there was an augmentation in the number of CD83+ cells toward the end of pregnancy within splenic B and CD4+ T cells, while CD83+ dendritic cells were reduced in spleen and inguinal lymph nodes of pregnant mice. Additionally, B lymphocytes in late-pregnancy presented a markedly higher sensitivity to LPS in terms of CD83 expression and sCD83 release. Progesterone induced a dosis-dependent upregulation of CD83 on T cells. Our data suggest that the regulation of CD83 expression represents a novel pathway of fetal tolerance and protection against inflammatory threats during pregnancy.

9.
Front Immunol ; 5: 6, 2014.
Article in English | MEDLINE | ID: mdl-24478775

ABSTRACT

DURING PREGNANCY, THE MATERNAL IMMUNE SYSTEM FACES A DOUBLE DILEMMA: tolerate the growing semi-allogeneic fetus and at the same time protect the mother and the progeny against pathogens. This requires a fine and extremely regulated equilibrium between immune activation and tolerance. As professional antigen presenting cells, B cells and in particular B-1a B cells, can activate or tolerize T cells and thus participate in the generation or regulation of the immune response. B-1a B cells were involved in the humoral immune response leading to pre-eclampsia, one of the main medical complications during pregnancy. Here we demonstrated that B-1a B cells are additionally involved in cellular immune mechanisms associated with pregnancy complications. Using a mouse model of pregnancy disturbances, we showed that B-1a B cells from animals suffering pregnancy disturbances but not from those developing normal pregnancies induce the differentiation of naïve T cells into Th17 and Th1 cells. This differential role of B-1a B cells during pregnancy seems to be associated with the co-stimulatory molecule CD86 as normal pregnant mice showed lower percentages of CD86 expressing B-1a B cells as compared to pregnant mice developing pregnancy disturbances or to non-pregnant animals. Our data bring to light a new and not explored role of B-1a B cells in the context of pregnancy.

SELECTION OF CITATIONS
SEARCH DETAIL
...