Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 6(6): e21040, 2011.
Article in English | MEDLINE | ID: mdl-21713038

ABSTRACT

BACKGROUND: There is need for locally-derived age-specific clinical laboratory reference ranges of healthy Africans in sub-Saharan Africa. Reference values from North American and European populations are being used for African subjects despite previous studies showing significant differences. Our aim was to establish clinical laboratory reference values for African adolescents and young adults that can be used in clinical trials and for patient management. METHODS AND FINDINGS: A panel of 298, HIV-seronegative individuals aged 13-34 years was randomly selected from participants in two population-based cross-sectional surveys assessing HIV prevalence and other sexually transmitted infections in western Kenya. The adolescent (<18 years)-to-adults (≥ 18 years) ratio and the male-to-female ratio was 1∶1. Median and 95% reference ranges were calculated for immunohematological and biochemistry values. Compared with U.S-derived reference ranges, we detected lower hemoglobin (HB), hematocrit (HCT), red blood cells (RBC), mean corpuscular volume (MCV), neutrophil, glucose, and blood urea nitrogen values but elevated eosinophil and total bilirubin values. Significant gender variation was observed in hematological parameters in addition to T-bilirubin and creatinine indices in all age groups, AST in the younger and neutrophil, platelet and CD4 indices among the older age group. Age variation was also observed, mainly in hematological parameters among males. Applying U.S. NIH Division of AIDS (DAIDS) toxicity grading to our results, 40% of otherwise healthy study participants were classified as having an abnormal laboratory parameter (grade 1-4) which would exclude them from participating in clinical trials. CONCLUSION: Hematological and biochemistry reference values from African population differ from those derived from a North American population, showing the need to develop region-specific reference values. Our data also show variations in hematological indices between adolescent and adult males which should be considered when developing reference ranges. This study provides the first locally-derived clinical laboratory reference ranges for adolescents and young adults in western Kenya.


Subject(s)
Blood Chemical Analysis , Hematologic Tests/standards , Reference Values , Rural Population , Adolescent , Adult , Female , Humans , Kenya , Male , Young Adult
3.
Virus Genes ; 38(1): 85-95, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19009341

ABSTRACT

Complete sequencing of p54-gene from 67 European, American, and West and East African Swine Fever virus (ASFV) isolates revealed that West African and European ASFV isolates classified within the predominant Genotype I according to partial sequencing of p72 were discriminated into four major sub-types on the basis of their p54 sequences. This highlighted the value of p54 gene sequencing as an additional, intermediate-resolution, molecular epidemiological tool for typing of ASFV viruses. We further evaluated p54-based genotyping, in combination with partial sequences of two other genes, for determining the genetic relationships and origin of viruses responsible for disease outbreaks in Kenya. Animals from Western and central Kenya were confirmed as being infected with ASFV using a p72 gene-based PCR assay, following outbreaks of severe hemorrhagic disease in domestic pigs in 2006 and 2007. Eleven hemadsorbing viruses were isolated in macrophage culture and genotyped using a combination of full-length p54-gene sequencing, partial p72-gene sequencing, and analysis of tetrameric amino acid repeat regions within the variable region of the B602L gene (CVR). The data revealed that these isolates were identical in their p72 and p54 sequence to viruses responsible for ASF outbreaks in Uganda in 2003. There was a minor difference in the number of tetrameric repeats within the B602L sequence of the Kenyan isolates that caused the second Kenyan outbreak in 2007. A practical implication of the genetic similarity of the Kenyan and Ugandan viral isolates is that ASF control requires a regional approach.


Subject(s)
African Swine Fever Virus/classification , African Swine Fever Virus/genetics , African Swine Fever/virology , Capsid Proteins/genetics , DNA, Viral/genetics , Genome, Viral , Viral Structural Proteins/genetics , African Swine Fever/epidemiology , African Swine Fever Virus/isolation & purification , Amino Acid Sequence , Animals , Cluster Analysis , DNA, Viral/chemistry , Disease Outbreaks , Genotype , Kenya/epidemiology , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology , Swine , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...