Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; 1159: 1-15, 2023.
Article in English | MEDLINE | ID: mdl-37213527

ABSTRACT

While DNA barcodes are increasingly provided in descriptions of new species, the whole mitochondrial and nuclear genomes are still rarely included. This is unfortunate because whole genome sequencing of holotypes allows perpetual genetic characterization of the most representative specimen for a given species. Thus, de novo genomes are invaluable additional diagnostic characters in species descriptions, provided the structural integrity of the holotype specimens remains intact. Here, we used a minimally invasive method to extract DNA of the type specimen of the recently described caddisfly species Silvataresholzenthali Rázuri-Gonzales, Ngera & Pauls, 2022 (Trichoptera: Pisuliidae) from the Democratic Republic of the Congo. A low-cost next generation sequencing strategy was used to generate the complete mitochondrial and draft nuclear genome of the holotype. The data in its current form is an important extension to the morphological species description and valuable for phylogenomic studies.

2.
Article in English | MEDLINE | ID: mdl-27481793

ABSTRACT

DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'.


Subject(s)
DNA Barcoding, Taxonomic , Insecta/classification , Phylogeny , Animals , Biodiversity , Haplotypes , Insecta/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...