Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Med ; 19(5): e1003994, 2022 05.
Article in English | MEDLINE | ID: mdl-35550620

ABSTRACT

BACKGROUND: Neurological complications due to chikungunya virus (CHIKV) infection have been described in different parts of the world, with children being disproportionately affected. However, the burden of CHIKV-associated neurological disease in Africa is currently unknown and given the lack of diagnostic facilities in routine care it is possible that CHIKV is an unrecognized etiology among children with encephalitis or other neurological illness. METHODS AND FINDINGS: We estimated the incidence of CHIKV infection among children hospitalized with neurological disease in Kilifi County, coastal Kenya. We used reverse transcriptase polymerase chain reaction (RT-PCR) to systematically test for CHIKV in cerebrospinal fluid (CSF) samples from children aged <16 years hospitalized with symptoms of neurological disease at Kilifi County Hospital between January 2014 and December 2018. Clinical records were linked to the Kilifi Health and Demographic Surveillance System and population incidence rates of CHIKV infection estimated. There were 18,341 pediatric admissions for any reason during the 5-year study period, of which 4,332 (24%) had CSF collected. The most common clinical reasons for CSF collection were impaired consciousness, seizures, and coma (47%, 22%, and 21% of all collections, respectively). After acute investigations done for immediate clinical care, CSF samples were available for 3,980 admissions, of which 367 (9.2%) were CHIKV RT-PCR positive. Case fatality among CHIKV-positive children was 1.4% (95% CI 0.4, 3.2). The annual incidence of CHIKV-associated neurological disease varied between 13 to 58 episodes per 100,000 person-years among all children <16 years old. Among children aged <5 years, the incidence of CHIKV-associated neurological disease was 77 per 100,000 person-years, compared with 20 per 100,000 for cerebral malaria and 7 per 100,000 for bacterial meningitis during the study period. Because of incomplete case ascertainment due to children not presenting to hospital, or not having CSF collected, these are likely minimum estimates. Study limitations include reliance on hospital-based surveillance and limited CSF sampling in children in coma or other contraindications to lumbar puncture, both of which lead to under-ascertainment of incidence and of case fatality. CONCLUSIONS: In this study, we observed that CHIKV infections are relatively more common than cerebral malaria and bacterial meningitis among children hospitalized with neurological disease in coastal Kenya. Given the wide distribution of CHIKV mosquito vectors, studies to determine the geographic extent of CHIKV-associated neurological disease in Africa are essential.


Subject(s)
Chikungunya Fever , Chikungunya virus , Malaria, Cerebral , Meningitis, Bacterial , Nervous System Diseases , Adolescent , Animals , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Child , Cohort Studies , Coma , Humans , Incidence , Kenya/epidemiology , Nervous System Diseases/epidemiology
2.
BMC Infect Dis ; 16: 301, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27316548

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) is an important global cause of severe acute respiratory infections in young children and the elderly. The epidemiology of HMPV in sub-Saharan Africa is poorly described and factors that allow its recurrent epidemics in communities not understood. METHODS: We undertook paediatric inpatient surveillance for HMPV in Kilifi County Hospital (KCH) of Coastal Kenya between 2007 and 2011. Nasopharyngeal samples collected from children aged 1 day-59 months admitted with severe or very severe pneumonia, were tested for HMPV using real-time polymerase chain reaction (RT-PCR). Partial nucleotide sequences of the attachment (G) and fusion (F) surface proteins of positive samples were determined and phylogenetically analyzed. RESULTS: HMPV was detected in 4.8 % (160/3320) of children [73.8 % (118/160) of these less than one year of age], ranging between 2.9 and 8.8 % each year over the 5 years of study. HMPV infections were seasonal in occurrence, with cases predominant in the months of November through April. These months frequently coincided with low rainfall, high temperature and low relative humidity in the location. Phylogenetic analysis of partial F and G sequences revealed three subgroups of HMPV, A2 (74 %, 91/123), B1 (3.2 %, 4/123) and B2 (22.8 %, 28/123) in circulation, with subgroup A2 predominant in majority of the epidemic seasons. Comparison of G sequences (local and global) provided a greater phylogenetic resolution over comparison of F sequences and indicated presence of probable multiple G antigenic variants within the subgroups due to differences in amino acid sequence, encoded protein length and glycosylation patterns. CONCLUSION: The present study reveals HMPV is an important seasonal contributor to respiratory disease hospitalization in coastal Kenya, with an evolutionary pattern closely relating to that of respiratory syncytial virus.


Subject(s)
Metapneumovirus/isolation & purification , Paramyxoviridae Infections/epidemiology , Pneumonia/virology , Amino Acid Sequence , Antigenic Variation , Female , Genetic Variation , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Male , Metapneumovirus/genetics , Nasopharynx/virology , Paramyxoviridae Infections/virology , Phylogeny , Pneumonia/epidemiology , Prevalence , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...