Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32257367

ABSTRACT

Over the last two decades, the pig population in Africa has grown rapidly, reflecting the increased adoption of pig production as an important economic activity. Of all species, pigs are likely to constitute a greater share of the growth in the livestock subsector. However, constraints such as respiratory infectious diseases cause significant economic losses to the pig industry worldwide. Compared to industrialized countries, the occurrence and impacts of respiratory diseases on pig production in Africa is under-documented. Hence, knowledge on prevalence and incidence of economically important swine respiratory pathogens in pigs in Africa is necessary to guide interventions for prevention and control. The purpose of this review was to document the current status of research on five important respiratory pathogens of swine in Africa to inform future research and interventions. The pathogens included were porcine reproductive and respiratory syndrome virus (PPRSv), porcine circovirus 2 (PCV2), Mycoplasma hyopneumoniae (M. hyopneumoniae), Actinobacillus pleuropneumoniae (APP) and swine influenza A viruses (IAV). For this review, published articles were obtained using Harzing's Publish or Perish software tool from GoogleScholar. Articles were also sourced from PubMed, ScienceDirect, FAO and OIE websites. The terms used for the search were Africa, swine or porcine, respiratory pathogens, M. hyopneumoniae, APP, PCV2, PPRSv, IAV, prevention and control. In all, 146 articles found were considered relevant, and upon further screening, only 85 articles were retained for the review. The search was limited to studies published from 2000 to 2019. Of all the studies that documented occurrence of the five respiratory pathogens, most were on IAV (48.4%, n = 15), followed by PCV2 (25.8%, n = 8), PPRSv (19.4%, n = 6), while only one study (3.2%, n = 1) reported APP and M. hyopneumoniae. This review highlights knowledge and information gaps on epidemiologic aspects as well as economic impacts of the various pathogens reported in swine in Africa, which calls for further studies.

2.
Transbound Emerg Dis ; 64(5): 1598-1609, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27480888

ABSTRACT

Sequencing and analysis of three discrete genome regions of African swine fever viruses (ASFV) from archival samples collected in 2007-2011 and active and passive surveillance between 2012 and 2015 in Nigeria were carried out. Analysis was conducted by genotyping of three single-copy African swine fever (ASF) genes. The E183L and B646L genes that encode structural proteins p54 and p72, respectively, were utilized to delineate genotypes before intragenotypic resolution by characterization of the tetrameric amino acid repeat region within the hypervariable central variable region of the B602L gene. The results showed no variation in the p72 and p54 gene regions sequenced. Phylogeny of p72 sequences revealed that all the Nigerian isolates belonged to genotype I, while that of the p54 recovered the Ia genotype. Analysis of B602L gene revealed the differences in the number of tetrameric repeats. Four new variants (Tet-15, Tet-17a, Tet-17b and Tet-48) were recovered, while a fifth variant (Tet-20) was the most widely distributed in the country displacing Tet-36 reported previously in 2003-2006. The viruses responsible for ASF outbreaks in Nigeria are from very closely related but mutated variants of the virus that have been circulating since 1997. A practical implication of the genetic variability of the Nigerian viral isolates in this study is the need for continuous sampling and analysis of circulating viruses, which will provide epidemiological information on the evolution of ASFV in the field versus new incursion for informed strategic control of the disease in the country.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/epidemiology , African Swine Fever/virology , African Swine Fever Virus/isolation & purification , Animals , Base Sequence , Disease Outbreaks , Gene Expression Regulation, Viral , Genetic Variation , Genotype , Nigeria/epidemiology , Phylogeny , Sequence Analysis, DNA , Swine , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
3.
Transbound Emerg Dis ; 57(5): 365-74, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20696028

ABSTRACT

Uganda had an unusually large number of foot-and-mouth disease (FMD) outbreaks in 2006, and all clinical reports were in cattle. A serological investigation was carried out to confirm circulating antibodies against foot-and-mouth disease virus (FMDV) by ELISA for antibodies against non-structural proteins and structural proteins. Three hundred and forty-nine cattle sera were collected from seven districts in Uganda, and 65% of these were found positive for antibodies against the non-structural proteins of FMDV. A subset of these samples were analysed for serotype specificity of the identified antibodies. High prevalences of antibodies against non-structural proteins and structural proteins of FMDV serotype O were demonstrated in herds with typical visible clinical signs of FMD, while prevalences were low in herds without clinical signs of FMD. Antibody titres were higher against serotype O than against serotypes SAT 1, SAT 2 and SAT 3 in the sera investigated for serotype-specific antibodies. Only FMDV serotype O virus was isolated from one probang sample. This study shows that the majority of the FMD outbreaks in 2006 in the region studied were caused by FMDV serotype O; however, there was also evidence of antibodies to both SAT 1 and SAT 3 in one outbreak in a herd inside Queen Elizabeth national park area.


Subject(s)
Cattle Diseases/virology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Animals , Cattle , Cattle Diseases/epidemiology , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Uganda/epidemiology
4.
Transbound Emerg Dis ; 57(4): 286-92, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20561289

ABSTRACT

In East Africa, the foot-and-mouth disease (FMD) virus (FMDV) isolates have over time included serotypes O, A, C, Southern African Territories (SAT) 1 and SAT 2, mainly from livestock. SAT 3 has only been isolated in a few cases and only in African buffalos (Syncerus caffer). To investigate the presence of antibodies against FMDV serotypes in wildlife in Uganda, serological studies were performed on buffalo serum samples collected between 2001 and 2003. Thirty-eight samples from African buffalos collected from Lake Mburo, Kidepo Valley, Murchison Falls and Queen Elizabeth National Parks were screened using Ceditest FMDV NS to detect antibodies against FMDV non-structural proteins (NSP). The seroprevalence of antibodies against non-structural proteins was 74%. To characterize FMDV antibodies, samples were selected and titrated using serotype-specific solid phase blocking enzyme linked immunosorbent assay (ELISAs). High titres of antibodies (> or =1 : 160) against FMDV serotypes SAT 1, SAT 2 and SAT 3 were identified. This study suggests that African buffalos in the different national parks in Uganda may play an important role in the epidemiology of SAT serotypes of FMDV.


Subject(s)
Antibodies, Viral/blood , Buffaloes , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/epidemiology , Animals , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus/classification , Seroepidemiologic Studies , Serotyping/veterinary , Uganda/epidemiology
5.
Transbound Emerg Dis ; 56(9-10): 362-71, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19909475

ABSTRACT

Foot-and-mouth disease (FMD) is endemic in Uganda with control strategies focusing on vaccination of cattle, while small ruminants are largely ignored. In order for Uganda to establish effective control strategies, it is crucial that the epidemiology of the disease is fully understood. This study summarizes results of serological investigations of sheep and goats for antibodies to FMDV from four districts in 2006 following an FMD outbreak in the region and from an attempted comprehensive random sampling in two districts in 2007. Antibodies were quantified and serotyped using competitive ELISA for antibodies towards non-structural proteins (NSP) and structural proteins towards serotype O, and blocking ELISA for antibodies towards the seven serotypes of FMD virus (FMDV). In 2006, sheep and goats in Bushenyi and Isingiro districts were free from antibodies towards FMDV, while herds in Kasese and Mbarara districts excluding Kahendero village were all positive for antibodies towards NSP and SP-O. In 2007, mean prevalence estimates of antibodies towards FMDV NSP was 14% in goats and 22% in sheep in Kasese district, while Bushenyi was still free. The difference between these two districts probably reflects different levels of FMDV challenge attributed to the variation in exposure rates which again in part may be as a result of the differing husbandry practices. Contrary to 2006, with clear antibodies towards serotype O, the serotype-specificity of the antibodies was less clear in 2007, as antibodies towards both serotype O and SAT serotypes were identified. Our results show that goats and sheep are infected during FMD outbreaks, and that they may be useful for determining the serotype of FMD outbreaks in Uganda, if they are sampled shortly after an outbreak.


Subject(s)
Antibodies, Viral/blood , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Animals , Disease Outbreaks/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Foot-and-Mouth Disease/epidemiology , Goats , Prevalence , Sheep , Uganda/epidemiology , Viral Nonstructural Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...