Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 30(11): 1530-1537.e3, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36087575

ABSTRACT

The heterodimer of human ubiquitin fusion degradation 1 (hUfd1) and human nuclear protein localization 4 (hNpl4) is a major cofactor of human p97 adenosine triphosphatase (ATPase). The p97-Ufd1-Npl4 complex translocates the ubiquitin-conjugated proteins from the endoplasmic reticulum membrane to the cytoplasm. Ubiquitinated proteins are then degraded by the proteasome. The structures of Npl4 and Ufd1-Npl4 (UN) complex in Saccharomyces cerevisiae have been recently reported; however, the structures of hNpl4 and the human UN complex remain unknown. Here, we report the crystal structures of the human UN complex at a resolution of 2.7 Å and hNpl4 at a resolution of 3.0 Å. We also present atomic details and characterization of the human UN complex. Crystallographic studies and site-directed mutagenesis of the hUfd1 residues involved in the interaction with hNpl4 revealed the atomic details of the two proteins.


Subject(s)
Adenosine Triphosphatases , Saccharomyces cerevisiae Proteins , Humans , Protein Binding , Adenosine Triphosphatases/chemistry , Nuclear Proteins/metabolism , Ubiquitin/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae/metabolism , Valosin Containing Protein/metabolism , Cell Cycle Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Anal Chem ; 92(4): 3417-3425, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31970977

ABSTRACT

In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.


Subject(s)
Carrier Proteins/analysis , Lipid Bilayers/metabolism , Models, Biological , Sphingolipids/metabolism , Biological Transport , Carrier Proteins/metabolism , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Lipid Bilayers/chemistry , Sphingolipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...