Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e14682, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095948

ABSTRACT

Magnetic-stimuli responsive hydrogels are quickly becoming a promising class of materials across numerous fields, including biomedical devices, soft robotic actuators, and wearable electronics. Hydrogels are commonly fabricated by conventional methods that limit the potential for complex architectures normally required for rapidly changing custom configurations. Rapid prototyping using 3D printing provides a solution for this. Previous work has shown successful extrusion 3D printing of magnetic hydrogels; however, extrusion-based printing is limited by nozzle resolution and ink viscosity. VAT photopolymerization offers a higher control over resolution and build-architecture. Liquid photo-resins with magnetic nanocomposites normally suffer from nanoparticle agglomeration due to local magnetic fields. In this work, we develop an optimised method for homogenously infusing up to 2 wt % superparamagnetic iron oxide nanoparticles (SPIONs) with a 10 nm diameter into a photo-resin composed of water, acrylamide and PEGDA, with improved nanoparticle homogeneity and reduced agglomeration during printing. The 3D printed starfish hydrogels exhibited high mechanical stability and robust mechanical properties with a maximum Youngs modulus of 1.8 MPa and limited shape deformation of 10% when swollen. Each individual arm of the starfish could be magnetically actuated when a remote magnetic field is applied. The starfish could grab onto a magnet with all arms when a central magnetic field was applied. Ultimately, these hydrogels retained their shape post-printing and returned to their original formation once the magnetic field had been removed. These hydrogels can be used across a wide range of applications, including soft robotics and magnetically stimulated actuators.

2.
Sci Rep ; 13(1): 3317, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849812

ABSTRACT

The aim of this study was to develop an automated pipeline capable of designing custom total knee replacement implants from CT scans. The developed pipeline firstly utilised a series of machine learning methods including classification, object detection, and image segmentation models, to extract geometrical information from inputted DICOM files. Statistical shape models then used the information to create femur and tibia 3D surface model predictions which were ultimately used by computer aided design scripts to generate customised implant designs. The developed pipeline was trained and tested using CT scan images, along with segmented 3D models, obtained for 98 Korean Asian subjects. The performance of the pipeline was tested computationally by virtually fitting outputted implant designs with 'ground truth' 3D models for each test subject's bones. This demonstrated the pipeline was capable of repeatably producing highly accurate designs, and its performance was not impacted by subject sex, height, age, or knee side. In conclusion, a robust, accurate and automatic, CT-based total knee replacement customisation pipeline was shown to be feasible and could afford significant time and cost advantages over conventional methods. The pipeline framework could also be adapted to enable customisation of other medical implants.


Subject(s)
Arthroplasty, Replacement, Knee , Humans , Prostheses and Implants , Knee Joint/diagnostic imaging , Knee Joint/surgery , Asian , Machine Learning
3.
Comput Methods Biomech Biomed Engin ; 26(6): 629-638, 2023 May.
Article in English | MEDLINE | ID: mdl-35549770

ABSTRACT

A methodology to explore the design space of off-the-shelf total knee replacement implant designs is outlined. Generic femur component and tibia plate designs were scaled to thousands of sizes and virtually fitted to 244 test subjects. Various implant designs and sizing requirements between genders and ethnicities were evaluated. 5 sizes optimised via the methodology produced a good global fit for most subjects. However, clinically significant over/underhang was present in 19% of subjects for tibia plates and 25% for femur components, reducing to 11/20% with 8 sizes. The analysis highlighted subtly better fit performance was obtained using sizes with unequal spacing.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Humans , Female , Male , Arthroplasty, Replacement, Knee/methods , Knee Joint/surgery , Prosthesis Design , Tibia/surgery , Femur/surgery
4.
Front Bioeng Biotechnol ; 10: 971096, 2022.
Article in English | MEDLINE | ID: mdl-36246387

ABSTRACT

Purpose: The aim of this study was to outline a fully automatic tool capable of reliably predicting the most suitable total knee replacement implant sizes for patients, using bi-planar X-ray images. By eliminating the need for manual templating or guiding software tools via the adoption of convolutional neural networks, time and resource requirements for pre-operative assessment and surgery could be reduced, the risk of human error minimized, and patients could see improved outcomes. Methods: The tool utilizes a machine learning-based 2D-3D pipeline to generate accurate predictions of subjects' distal femur and proximal tibia bones from X-ray images. It then virtually fits different implant models and sizes to the 3D predictions, calculates the implant to bone root-mean-squared error and maximum over/under hang for each, and advises the best option for the patient. The tool was tested on 78, predominantly White subjects (45 female/33 male), using generic femur component and tibia plate designs scaled to sizes obtained for five commercially available products. The predictions were then compared to the ground truth best options, determined using subjects' MRI data. Results: The tool achieved average femur component size prediction accuracies across the five implant models of 77.95% in terms of global fit (root-mean-squared error), and 71.79% for minimizing over/underhang. These increased to 99.74% and 99.49% with ±1 size permitted. For tibia plates, the average prediction accuracies were 80.51% and 72.82% respectively. These increased to 99.74% and 98.98% for ±1 size. Better prediction accuracies were obtained for implant models with fewer size options, however such models more frequently resulted in a poor fit. Conclusion: A fully automatic tool was developed and found to enable higher prediction accuracies than generally reported for manual templating techniques, as well as similar computational methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...