Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38004710

ABSTRACT

The unique oligomeric alkaliphilic laccase-like oxidases of the ascomycete C. geniculata VKM F-3561 (with molecular masses about 1035 and 870 kDa) were purified and characterized for the first time. The ability of the enzymes to oxidize phenylpropanoids and phenolic compounds under neutral environmental conditions with the formation of previously unknown di-, tri-, and tetrameric products of transformation was shown. The possibility to obtain industrially valuable compounds (dihydroxybenzyl alcohol and hydroxytyrosol) from caffeic acid using laccase-like oxidases of C. geniculata VKM F-3561 has been shown. Complete nucleotide sequence of the laccase gene, which is expressed at the peak of alkaliphilic laccase activity of the fungus, and its promoter region were determined. Based on the phylogenetic analysis of the nucleotide sequence, the nearest relationship of the isolated laccase gene with similar genes of fungi of the genera Alternaria, Bipolaris, and Cochliobolus was shown. Homologous model of the laccase structure was predicted and a proton channel was found, which was presumably responsible for the accumulation and transport of protons to T2/T3-copper center in the alkaliphilic laccase molecule and providing the functional activity of the enzyme in the neutral alkaline environment conditions.

2.
Chembiochem ; 24(4): e202200600, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36513608

ABSTRACT

Most of the currently known fungal laccases show their maximum activity under acidic environmental conditions. It is known that a decrease in the activity of a typical laccase at neutral or alkaline pH values is the result of an increase in the binding of the hydroxide anion to the T2/T3 copper center, which prevents the transfer of an electron from the T1 Cu to the trinuclear copper center. However, evolutionary pressure has resolved the existing limitations in the catalytic mechanism of laccase, allowing such enzymes to be functionally active under neutral/alkaline pH conditions, thereby giving fungi an advantage for their survival. Combined molecular and biochemical studies, homological modeling, calculation of the electrostatic potential on the Connolly surface at pH 5.0 and 7.0, and structural analysis of the novel alkaliphilic laccase of Myrothecium roridum VKM F-3565 and alkaliphilic and acidophilic fungal laccases with a known structure allowed a new intramolecular channel near the one of the catalytic aspartate residues at T2-copper atom to be found. The amino acid residues of alkaliphilic laccases forming this channel can presumably serve as proton donors for catalytic aspartates under neutral conditions, thus ensuring proper functioning. For the first time for ascomycetous laccases, the production of new trimeric products of phenylpropanoid condensation under neutral conditions has been shown, which could have a potential for use in pharmacology.


Subject(s)
Ascomycota , Hypocreales , Laccase/chemistry , Ascomycota/metabolism , Molecular Dynamics Simulation
3.
BMC Struct Biol ; 7: 60, 2007 Sep 26.
Article in English | MEDLINE | ID: mdl-17897461

ABSTRACT

BACKGROUND: Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in pathogenesis, immunogenesis and morphogenesis of organisms and in the metabolic turnover of complex organic substances. They catalyze the coupling between the four one-electron oxidations of a broad range of substrates with the four-electron reduction of dioxygen to water. These catalytic processes are made possible by the contemporaneous presence of at least four copper ion sites, classified according to their spectroscopic properties: one type 1 (T1) site where the electrons from the reducing substrates are accepted, one type 2 (T2), and a coupled binuclear type 3 pair (T3) which are assembled in a T2/T3 trinuclear cluster where the electrons are transferred to perform the O2 reduction to H2O. RESULTS: The structure of a laccase from the white-rot fungus Lentinus (Panus) tigrinus, a glycoenzyme involved in lignin biodegradation, was solved at 1.5 A. It reveals a asymmetric unit containing two laccase molecules (A and B). The progressive reduction of the copper ions centers obtained by the long-term exposure of the crystals to the high-intensity X-ray synchrotron beam radiation under aerobic conditions and high pH allowed us to detect two sequential intermediates in the molecular oxygen reduction pathway: the "peroxide" and the "native" intermediates, previously hypothesized through spectroscopic, kinetic and molecular mechanics studies. Specifically the electron-density maps revealed the presence of an end-on bridging, micro-eta 1:eta 1 peroxide ion between the two T3 coppers in molecule B, result of a two-electrons reduction, whereas in molecule A an oxo ion bridging the three coppers of the T2/T3 cluster (micro3-oxo bridge) together with an hydroxide ion externally bridging the two T3 copper ions, products of the four-electrons reduction of molecular oxygen, were best modelled. CONCLUSION: This is the first structure of a multicopper oxidase which allowed the detection of two intermediates in the molecular oxygen reduction and splitting. The observed features allow to positively substantiate an accurate mechanism of dioxygen reduction catalyzed by multicopper oxidases providing general insights into the reductive cleavage of the O-O bonds, a leading problem in many areas of biology.


Subject(s)
Laccase/chemistry , Lentinula/enzymology , Oxidoreductases/chemistry , Protein Conformation , Amino Acid Sequence , Crystallography, X-Ray , Laccase/metabolism , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/metabolism , Sequence Alignment
4.
Article in English | MEDLINE | ID: mdl-16510995

ABSTRACT

The blue laccase from the white-rot basidiomycete fungus Panus tigrinus, an enzyme involved in lignin biodegradation, has been crystallized. P. tigrinus laccase crystals grew within one week at 296 K using the sitting-drop vapour-diffusion method in 22%(w/v) PEG 4000, 0.2 M CaCl2, 100 mM Tris-HCl pH 7.5. The crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 54.2, b = 111.6, c = 97.1, beta = 97.7 degrees , and contain 46% solvent. A complete native data set was collected to 1.4 A resolution at the copper edge. Molecular replacement using the Coprinus cinereus laccase structure (PDB code 1hfu) as a starting model was performed and initial electron-density maps revealed the presence of a full complement of copper ions. Model refinement is in progress. The P. tigrinus laccase structural model exhibits the highest resolution available to date and will assist in further elucidation of the catalytic mechanism and electron-transfer processes for this class of enzymes.


Subject(s)
Basidiomycota/enzymology , Laccase/chemistry , Lignin/metabolism , Crystallography, X-Ray , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Laccase/isolation & purification , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...