Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Physiol Educ ; 46(4): 651-657, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36173341

ABSTRACT

Graduate students intending to pursue an academic career in the sciences have much to gain by learning to teach science but often have limited training opportunities. In response to this need, we designed a one-semester course, Learning Design in Science Education (LDSE), in which students receive formal training in pedagogical theory with role model demonstration of current best practices in active learning. Building from previous descriptions of similar courses, we added a practical experience for the students to utilize their new skills to design and teach a mini science course at the end of the semester. Additionally, students developed a teaching portfolio, complete with a personal teaching statement, syllabus, course materials, and evaluations from peers and faculty. Overall, the course was well received by the students and there are early indications that students benefited from their participation in the course. In this manuscript, we present the design and outcomes of the course, faculty and student perceptions, and thoughts on improvements for future semesters and its potential for use by others.NEW & NOTEWORTHY The need for graduate students and other trainees to learn effective methods for teaching science is greater than ever. In this manuscript, we offer a model course for the training of graduate students in learning theory, curriculum design, and technology use in a biomedical sciences environment.


Subject(s)
Curriculum , Education, Graduate , Humans , Education, Graduate/methods , Faculty , Students , Problem-Based Learning , Teaching
2.
Autism Res ; 14(7): 1332-1346, 2021 07.
Article in English | MEDLINE | ID: mdl-33847078

ABSTRACT

People with autism spectrum disorder (ASD) exhibit a variety of medical morbidities at significantly higher rates than the general population. Using an established monkey model of naturally occurring low sociality, we investigated whether low-social monkeys show an increased burden of medical morbidities compared to their high-social counterparts. We systematically reviewed the medical records of N = 152 (n = 73 low-social; n = 79 high-social) rhesus macaques (Macaca mulatta) to assess the number of traumatic injury, gastrointestinal, and inflammatory events, as well as the presence of rare medical conditions. Subjects' nonsocial scores, determined by the frequency they were observed in a nonsocial state (i.e., alone), and macaque Social Responsiveness Scale-Revised (mSRS-R) scores were also used to test whether individual differences in social functioning were related to medical morbidity burden. Medical morbidity type significantly differed by group, such that low-social monkeys incurred higher rates of traumatic injury compared to high-social monkeys. Nonsocial scores and mSRS-R scores also significantly and positively predicted traumatic injury rates, indicating that monkeys with the greatest social impairment were most impacted on this health measure. These findings from low-social monkeys are consistent with well-documented evidence that people with ASD incur a greater number of traumatic injuries and receive more peer bullying than their neurotypical peers, and add to growing evidence for the face validity of this primate model. LAY SUMMARY: People with autism exhibit multiple medical problems at higher rates than the general population. We conducted a comprehensive medical record review of monkeys that naturally exhibit differences in sociality and found that low-social monkeys are more susceptible to traumatic injuries than high-social monkeys. These results are consistent with reports that people with autism also incur greater traumatic injury and peer bullying and add to growing evidence for the validity of this monkey model.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autism Spectrum Disorder/epidemiology , Humans , Macaca mulatta , Morbidity , Social Behavior
3.
Biol Sex Differ ; 4: 12, 2013.
Article in English | MEDLINE | ID: mdl-23805912

ABSTRACT

BACKGROUND: Human and animal studies support the idea that there are sex differences in the development of diabetic renal disease. Our lab and others have determined that in addition to Ang II (through the AT1R), growth hormone (GH) contributes to renal damage in models of renal failure; however, the impact of sex and GH on the mechanisms initiating diabetic renal disease is not known. This study examined the effect of sex and GH on parameters of renal damage in early, uncontrolled streptozotocin (STZ)-induced diabetes. METHODS: Adult male and female Sprague-Dawley rats were injected with vehicle (control), STZ, or STZ + GH and euthanized after 8 weeks. RESULTS: Mild but significant glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) was observed in both kidneys from male and female diabetic rats, with GH significantly increasing GS and TIF by 30% and 25% in male rats, but not in female rats. STZ increased TGF-ß expression in both kidneys from male and female rats; however, while GH had no further effect on TGF-ß protein in diabetic females, GH increased TGF-ß protein in the male rat's kidneys by an additional 30%. This sex-specific increase in renal injury following GH treatment was marked by increased MCP-1 and CD-68+ cell density. STZ also reduced renal MMP-2 and MMP-9 protein expression in both kidneys from male and female rats, but additional decreases were only observed in GH-treated diabetic male rats. The sex differences were independent of AT1R activity. CONCLUSIONS: These studies indicate that GH affects renal injury in diabetes in a sex-specific manner and is associated with an increase in pro-inflammatory mediators.

4.
Cardiovasc Res ; 53(3): 577-88, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11861028

ABSTRACT

Cardiovascular diseases are the major causes of illness and death in women. Premenopausal women are relatively protected from coronary artery disease and atherosclerosis as compared to postmenopausal women, and this protection is attributed to the effects of the female sex hormone (estrogen). The vasculature, like the reproductive tissues, bone, liver, and brain, is now recognized as an important site of estrogen's action. Although estrogen's beneficial effects on the cardiovascular system are well described in many studies, the molecular basis of estrogen protective mechanisms are still quite vague. Both genomic mechanisms, mediated primarily through estrogen receptor alpha (ER alpha) and estrogen receptor beta (ER beta), and non-genomic mechanisms, through nitric oxide (NO), of estrogen action are controversial and do not entirely explain the effects of estrogen on vascular preservation during conditions of oxidative stress. Until recently, the atheroprotective effects of estrogen were attributed principally to its effects on serum lipid concentrations and cholesterol levels. However, two recent reports that estrogen therapy has no effect on the progression of coronary atherosclerosis in women with established disease, despite the favorable changes in LDL and cholesterol levels, leads to questions about the lipid/cholesterol mechanism of estrogen-mediated effects on atherosclerosis. Alternatively, the high level of homocysteine, found to correlate with accelerated cardiovascular disease and identified as an independent risk factor for atherosclerosis, was recently described to be diminished by estrogen. Protection against disturbed sulfhydryl metabolism and higher homocysteine level could be the missing link in understanding how exactly estrogen affects vascular cells metabolism and responses to oxidative stress. This review focuses on estrogen/homocysteine interactions and their relevance to the cardiovascular system.


Subject(s)
Cardiovascular Diseases/etiology , Estrogens/metabolism , Homocysteine/metabolism , Sex , Breast Neoplasms/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/blood , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Humans , Lipids/blood , Oxidative Stress , Risk Factors , Uterine Neoplasms/metabolism
5.
Cardiovasc Res ; 53(3): 589-96, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11861029

ABSTRACT

OBJECTIVE: We investigated whether estradiol may prevent accelerated atherosclerosis due to hyperhomocysteinemia by enhancing the antioxidant system. METHODS: Male Wistar rats were treated with placebo (P) or 1 mg (1E2) and 2 mg (2E2) 17 beta estradiol. Half of the animals (n=6) from each group received homocysteine (Hcy, 100 mg/kg/day) administered in the drinking water for 60 days (P/Hcy, 1E2/Hcy and 2E2/Hcy). Glutathione (GSH) content and glucose-6-phosphate dehydrogenase (G6PDH) activity were determined in myocardial tissues, as well as the serum Hcy concentrations and blood levels of hydrogen peroxide (H(2)O(2)). The relaxation response of aortic ring segments to acetylcholine (ACh) was used for the assessment of endothelial function, and hematoxylin-eosin stained thin sections of rat aorta were used for detection of the histological changes (namely endothelial damage and wall thickening). RESULTS: Depression of relaxation to ACh occurred in P/Hcy compared to P (15.7 +/- 4% vs. 96.3 +/- 7%, P<0.0001), but estrogen significantly restored endothelium dependent relaxation in hyperhomocysteinemic rats (86.8 +/- 9.3%, P<0.001). Histological examination revealed aortic endothelial denudation in P/Hcy while the endothelial structures of the aorta from the 1E2/Hcy and 2E2/Hcy appeared normal. Significant reductions in GSH and G6PDH levels were detected in P/Hcy (1.5 +/- 0.01 micromol/g and 3.21 +/- 1.2 U/mg, respectively) compared to 1E2/Hcy (2.5 +/- 0.3 micromol/g and 12.81 +/- 1.5 U/mg, P<0.001) and 2E2/Hcy (3.11 +/- 1.1 micromol/g and 15.66 +/- 4 U/mg, P<0.001). In addition, blood H(2)O(2) level in 1E2/Hcy and 2E2/Hcy remained low while it was raised significantly in P/Hcy compared to P (P<0.001). CONCLUSIONS: These data suggest that the observed reduction of GSH levels and suppression of G6PDH activity induced by Hcy coupled, with endothelial ultrastructural changes and impaired function, all reversed by estradiol, may have relevance to the mechanisms of atherogenesis and the beneficial effects of estrogen replacement therapy.


Subject(s)
Antioxidants/pharmacology , Arteriosclerosis/etiology , Endothelium, Vascular/physiopathology , Estradiol/pharmacology , Hyperhomocysteinemia/complications , Acetylcholine , Animals , Aorta , Arteriosclerosis/drug therapy , Arteriosclerosis/physiopathology , Endothelium, Vascular/diagnostic imaging , Endothelium, Vascular/drug effects , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Hydrogen Peroxide/blood , Hyperhomocysteinemia/physiopathology , In Vitro Techniques , Male , Myocardium/metabolism , Rats , Rats, Wistar , Ultrasonography
6.
J Cardiovasc Pharmacol ; 39(3): 347-53, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11862113

ABSTRACT

High levels of homocysteine (Hcy) accelerate endothelial cell damage by producing hydrogen peroxide (H(2)O(2)). We investigated whether 17-beta estradiol may prevent the accelerated rate of endothelial cell detachment and reduced cell viability in cultured endothelial cells challenged with Hcy. Cultured bovine aortic endothelial cells (BAEC) were incubated for 72-h with either vehicle (alcohol) or different concentrations of 17-beta estradiol (1 nM [1E2] and 10 nM [10E2]) before being challenged with 0.5 mM of Hcy. Cell viability and H(2)O(2) levels were evaluated at 30 min, 1-, 2-, 4-, 8-, and 24-h after adding Hcy. Cell suspensions were frozen in liquid nitrogen and used later for spectrophotometric measurement of intracellular glutathione (GSH) levels. Cell viability 24 h after Hcy administration was significantly lower in vehicle versus 1 nM and 10 nM 17-beta estradiol (44 +/- 5% vs. 70.66 +/- 4%, [p < 0.001] and 79 +/- 5% respectively, [p < 0.001]). H(2)O(2) levels were higher in vehicle (1 +/- 0.05 microM) compared with 1E2 and 10E2 (0.8 +/- 0.1 microM, p = 0.02 and 0.1 +/- 0.05 microM, respectively, p < 0.001), whereas GSH content was increased in 1E1 and 10E2 versus control (27.69 +/- 4.6 nM/10(6) cells and 43.49 +/- 5.5 nM/10(6) cells vs. 13.33 +/- 1.5 nM/10(6) cells, p < 0.001). Bovine aortic endothelial cells treatment with 17-beta estradiol (0, 1, and 10 nM) and 0.1 mmol buthionine sulfoximine, an inhibitor of gamma-glutamylcysteine synthase, abolished the beneficial effects of estradiol alone on cell viability, GSH content, and H2O2 generation. Estradiol prevents Hcy-induced endothelial cell injury by increasing the intracellular content of GSH.


Subject(s)
Antioxidants/pharmacology , Endothelium, Vascular/drug effects , Estradiol/pharmacology , Homocysteine/pharmacology , Oxidative Stress , Animals , Aorta/cytology , Cattle , Cell Survival/drug effects , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Glutathione/metabolism , Homocysteine/metabolism , Hydrogen Peroxide/metabolism , Intracellular Fluid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...