Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 9(2)2022.
Article in English | MEDLINE | ID: mdl-35168949

ABSTRACT

Expression and secretion of neurotrophic factors have long been known as a key mechanism of neuroglial interaction in the central nervous system. In addition, several other intrinsic neuroprotective pathways have been described, including those involving small heat shock proteins such as α-crystallins. While initially considered as a purely intracellular mechanism, both αA-crystallins and αB-crystallins have been recently reported to be secreted by glial cells. While an anti-apoptotic effect of such secreted αA-crystallin has been suggested, its regulation and protective potential remain unclear. We recently identified residue threonine 148 (T148) and its phosphorylation as a critical regulator of αA-crystallin intrinsic neuroprotective function. In the current study, we explored how mutation of this residue affected αA-crystallin chaperone function, secretion, and paracrine protective function using primary glial and neuronal cells. After demonstrating the paracrine protective effect of αA-crystallins secreted by primary Müller glial cells (MGCs), we purified and characterized recombinant αA-crystallin proteins mutated on the T148 regulatory residue. Characterization of the biochemical properties of these mutants revealed an increased chaperone activity of the phosphomimetic T148D mutant. Consistent with this observation, we also show that exogeneous supplementation of the phosphomimetic T148D mutant protein protected primary retinal neurons from metabolic stress despite similar cellular uptake. In contrast, the nonphosphorylatable mutant was completely ineffective. Altogether, our study demonstrates the paracrine role of αA-crystallin in the central nervous system as well as the therapeutic potential of functionally enhanced αA-crystallin recombinant proteins to prevent metabolic-stress induced neurodegeneration.


Subject(s)
Crystallins , Crystallins/chemistry , Crystallins/genetics , Crystallins/metabolism , Molecular Chaperones/metabolism , Recombinant Proteins/metabolism , Retinal Ganglion Cells/metabolism
2.
J Clin Med ; 10(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071438

ABSTRACT

PURPOSE: We have previously demonstrated that HspB4/αA-crystallin, a molecular chaperone, plays an important intrinsic neuroprotective role during diabetes, by its phosphorylation on residue 148. We also reported that HspB4/αA-crystallin is highly expressed by glial cells. There is a growing interest in the potential causative role of low-grade inflammation in diabetic retinopathy pathophysiology and retinal Müller glial cells' (MGCs') participation in the inflammatory response. MGCs indeed play a central role in retinal homeostasis via secreting various cytokines and other mediators. Hence, this study was carried out to delineate and understand the regulatory function of HspB4/αA-crystallin in the inflammatory response associated with metabolic stresses. METHODS: Primary MGCs were isolated from knockout HspB4/αA-crystallin mice. These primary cells were then transfected with plasmids encoding either wild-type (WT), phosphomimetic (T148D), or non-phosphorylatable mutants (T148A) of HspB4/αA-crystallin. The cells were exposed to multiple metabolic stresses including serum starvation (SS) or high glucose with TNF-alpha (HG + T) before being further evaluated for the expression of inflammatory markers by qPCR. The total protein expression along with subcellular localization of NF-kB and the NLRP3 component was assessed by Western blot. RESULTS: Elevated levels of IL-6, IL-1ß, MCP-1, and IL-18 in SS were significantly diminished in MGCs overexpressing WT and further in T148D as compared to EV. The HG + T-induced increase in these inflammatory markers was also dampened by WT and even more significantly by T148D overexpression, whereas T148A was ineffective in either stress. Further analysis revealed that overexpression of WT or the T148D, also led to a significant reduction of Nlrp3, Asc, and caspase-1 transcript expression in serum-deprived MGCs and nearly abolished the NF-kB induction in HG + T diabetes-like stress. This mechanistic effect was further evaluated at the protein level and confirmed the stress-dependent regulation of NLRP3 and NF-kB by αA-crystallin. CONCLUSIONS: The data gathered in this study demonstrate the central regulatory role of HspB4/αA-crystallin and its modulation by phosphorylation on T148 in retinal MGCs. For the first time, this study demonstrates that HspB4/αA-crystallin can dampen the stress-induced expression of pro-inflammatory cytokines through the modulation of multiple key inflammatory pathways, therefore, suggesting its potential as a therapeutic target for the modulation of chronic neuroinflammation.

3.
Invest Ophthalmol Vis Sci ; 59(5): 2042-2053, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29677366

ABSTRACT

Purpose: Loss of retinal capillary endothelial cells and pericytes through apoptosis is an early event in diabetic retinopathy (DR). Inflammatory pathways play a role in early DR, yet the biochemical mechanisms are poorly understood. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), an inflammatory cytokine-inducible enzyme, on retinal endothelial apoptosis and capillary degeneration in the diabetic retina. Methods: IDO was detected in human and mouse retinas by immunohistochemistry or Western blotting. Interferon-γ (IFN-γ) levels were measured by ELISA. IDO levels were measured in human retinal capillary endothelial cells (HREC) cultured in the presence of IFN-γ ± 25 mM D-glucose. Reactive oxygen species (ROS) were measured using CM-H2DCFDA dye and apoptosis was measured by cleaved caspase-3. The role of IDO in DR was determined in IDO knockout (IDO-/-) mice with streptozotocin-induced diabetes. Results: The IDO and IFN-γ levels were higher in human diabetic retinas with retinopathy relative to nondiabetic retinas. Immunohistochemical data showed that IDO is present in capillary endothelial cells. IFN-γ upregulated the IDO and ROS levels in HREC. The blockade of either IDO or kynurenine monooxygenase led to inhibition of ROS in HREC. Apoptosis through this pathway was inhibited by an ROS scavenger, TEMPOL. Capillary degeneration was significantly reduced in diabetic IDO-/- mice compared to diabetic wild-type mice. Conclusions: The results suggest that the kynurenine pathway plays an important role in the inflammatory damage in the diabetic retina and could be a new therapeutic target for the treatment of DR.


Subject(s)
Diabetic Retinopathy/complications , Endothelial Cells/pathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Retinal Degeneration/prevention & control , Retinal Vessels/pathology , Aged , Animals , Blotting, Western , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Electrophoresis, Polyacrylamide Gel , Endothelial Cells/enzymology , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Reactive Oxygen Species/metabolism , Retinal Degeneration/enzymology , Retinal Vessels/enzymology
4.
JCI Insight ; 3(4)2018 02 22.
Article in English | MEDLINE | ID: mdl-29467334

ABSTRACT

Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.


Subject(s)
Crystallins/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Retinopathy/pathology , Retina/pathology , alpha-Crystallin A Chain/metabolism , Aged , Animals , Cell Line , Crystallins/genetics , Diabetes Mellitus, Experimental/chemically induced , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/etiology , Electroretinography , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Female , Humans , Male , Mice , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Phosphorylation , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retina/cytology , Streptozocin/toxicity , Transfection , alpha-Crystallin A Chain/genetics , alpha-Crystallin B Chain/genetics , alpha-Crystallin B Chain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...