Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 7(1): 328, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020490

ABSTRACT

The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo-simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.

2.
Stat Med ; 26(21): 3862-74, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17566966

ABSTRACT

Measurement of stimulus-induced changes in activity in the brain is critical to the advancement of neuroscience. Scientists use a range of methods, including electrode implantation, surface (scalp) electrode placement, and optical imaging of intrinsic signals, to gather data capturing underlying signals of interest in the brain. These data are usually corrupted by artifacts, complicating interpretation of the signal; in the context of optical imaging, two primary sources of corruption are the heartbeat and respiration cycles. We introduce a new linear state-space framework that uses the Kalman filter to remove these artifacts from optical imaging data. The method relies on a likelihood-based analysis under the specification of a formal statistical model, and allows for corrections to the signal based on auxiliary measurements of quantities closely related to the sources of contamination, such as physiological processes. Furthermore, the likelihood-based modeling framework allows us to perform both goodness-of-fit testing and formal hypothesis testing on parameters of interest. Working with data collected by our collaborators, we demonstrate the method of data collection in an optical imaging study of a cat's brain.


Subject(s)
Brain Mapping/methods , Brain/metabolism , Data Interpretation, Statistical , Models, Statistical , Photic Stimulation , Animals , Cats , Neurosciences , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...