Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Insects ; 15(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276826

ABSTRACT

Trogoderma granarium Everts, the khapra beetle, is a serious pest of stored products throughout the world. Larvae pose a significant threat to stored products because they feed on >100 different commodities, possess the ability to enter facultative diapause, and are difficult to detect. Control methods for T. granarium include fumigation, contact insecticides, trapping, and insecticide-incorporated packaging. The objective of this study was to determine the residual efficacy of two insecticide formulations (methoprene + deltamethrin + piperonyl butoxide synergist Gravista® and methoprene + deltamethrin, DiaconIGR®Plus). These insecticides were evaluated on three stored product commodities, corn, wheat, and brown rice, by exposing T. granarium larvae during a 12-month testing period. Both formulations significantly reduced adult emergence on corn and wheat for 12 months and on brown rice for up to 6 months. Adult emergence was highest at month 12 for corn (8.41%), and brown rice (85.88%), and month 9 for wheat (39.52%), treated with DiaconIGR®Plus or Gravista®, respectively. A biological index used to measure the development of exposed larvae on the treated grain from the larval stage (low values) to adult emergence (high values) was lower (fewer adults) on corn and wheat compared to controls. Despite differences in formulations, each of these grain protectants could be utilized by stored commodity managers to protect commodities during storage and transportation for T. granarium when and if this pest is detected at USA ports of entry.

2.
J Econ Entomol ; 116(4): 1432-1446, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37352550

ABSTRACT

Certain lures are marketed toward particular pests or classes of pests, while others might be multi-species lures. Investigative aims for this study included both which trap was most sensitive and whether different combinations of traps and attractants were delivering novel information about the stored product insect community. Comparisons were made for all combinations of 3 commercial traps and 4 different attractants plus an untreated control on the capture of stored-product insects for 2 consecutive years in 3 food processing facilities in Central Greece. The traps used in the experiments were Dome Trap (Trécé Inc., USA), Wall Trap (Trécé) and Box Trap (Insects Limited, Ltd., USA). The attractants that were evaluated were 0.13 g of (i) PantryPatrol gel (Insects Limited), (ii) Storgard kairomone food attractant oil (Trécé), (iii) wheat germ (Honeyville, USA), and (iv) Dermestid tablet attractant (Insects Limited). The traps were inspected approximately every 15 days and rotated. A total of 34,000+ individuals were captured belonging to 26 families and at least 48 species. The results indicated that Indian meal moth, Plodia interpunctella (Hübner), red flour beetle, Tribolium castaneum (Herbst), and cigarette beetle, Lasioderma serricorne (F.) were the most abundant. Although there were noticeable differences among the different traps and attractants for specific species, all combinations provided similar information on population dynamics. Generally, Dome traps baited with either the oil or the gel, were found to be the most sensitive. The results of the present study demonstrate the importance of long-term trapping protocols, as a keystone in IPM-based control strategies in food processing facilities.


Subject(s)
Food-Processing Industry , Insect Control , Insecta , Pheromones , Greece , Insect Control/instrumentation , Insect Control/methods , Pheromones/pharmacology , Animals , Insecta/classification , Insecta/drug effects
3.
Sci Rep ; 13(1): 3656, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871082

ABSTRACT

The establishment of an exotic pest may require displacing local species with a similar niche. The potential of Trogoderma granarium to displace Trogoderma inclusum was explored in a stored product setting. We performed direct competition experiments varying commodity and temperature over different durations. At nine weeks T. inclusum outproduced T. granarium on all commodities at any temperature. However the proportion of T. granarium versus T. inclusum was greater at 32 °C compared to 25 °C. The nine-week production of T. granarium was best on wheat, while rice was optimal for T. inclusum. After 25 weeks, when adults were used at the start of competition, T. inclusum maintained an advantage in the direct competition. If larvae were used to initiate the competition for 25 weeks, the two species coexisted well at 25 °C, but T. granarium nearly excluded T. inclusum at 32 °C. Thus T. inclusum performs better in competition over shorter intervals when resources are plentiful, but T. granarium can be more successful over longer time periods, particularly when late instar larvae are involved. The finding suggests a real threat of introductions of T. granarium larvae to establish populations within grain storage infrastructure where T. inclusum is common.


Subject(s)
Coleoptera , Animals , Edible Grain , Larva , Food Storage
4.
Sci Rep ; 13(1): 3327, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849552

ABSTRACT

Trogoderma granarium Everts, the khapra beetle, native to the Indian subcontinent, is one of the world's most destructive pests of stored food products. Early detection of this pest facilitates prompt response towards the invasion and prevents the need for costly eradication efforts. Such detection requires proper identification of T. granarium, which morphologically resembles some more frequently encountered, non-quarantine congeners. All life stages of these species are difficult to distinguish using morphological characters. Additionally, biosurveillance trapping can result in the capture of large numbers of specimens awaiting identification. To address these issues, we aim to develop an array of molecular tools to rapidly and accurately identify T. granarium among non-target species. Our crude, cheap DNA extraction method performed well for Trogoderma spp. and is suitable for downstream analyses including sequencing and real-time PCR (qPCR). We developed a simple quick assay usingrestriction fragment length polymorphism to distinguish between T. granarium and the closely related, congeneric T. variabile Ballion and T. inclusum LeConte. Based on newly generated and published mitochondrial sequence data, we developed a new multiplex TaqMan qPCR assay for T. granarium with improved efficiency and sensitivity over existing qPCR assays. These new tools benefit regulatory agencies and the stored food products industry by providing cost- and time-effective solutions to enhance the identification of T. granarium from related species. They can be added to the existing pest detection toolbox. The selection of which method to use would depend on the intended application.


Subject(s)
Biosurveillance , Coleoptera , Animals , Biological Assay , Coleoptera/genetics
5.
J Econ Entomol ; 114(4): 1489-1495, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34184059

ABSTRACT

The khapra beetle, Trogoderma granarium, is an important quarantine pest of stored-products. While it is not established in the North America, frequent interceptions highlight the need for treatments to eradicate isolated populations if they occur. Methyl bromide has long been the standard fumigant used for this purpose; however, increasing restrictions on its use necessitate the development of new treatment options. Here we evaluate a treatment for khapra beetle using a combination of sulfuryl fluoride (SF) and propylene oxide (PPO). Experiments were conducted to determine the most tolerant stages and the effective rates for each compound. Combination treatments using both products were then evaluated at several temperatures to determine effective doses for quarantine level control. The egg stage was by far the most tolerant to SF, requiring concentration × time (CT) products roughly 10-fold greater than the next most tolerant stage, diapausing larvae. Diapausing larvae were significantly more tolerant to SF than non-diapausing larvae in a recently collected 'field' strain, but not in a more than 30-yr-old 'laboratory' culture. PPO treatments were shown to completely control the egg stage at CTs greater than 155 hr-mgL-1 at both 10 and 20°C. Resulting combination treatments with initial dose rates of 96 and 40 mgL-1 at 10°C and 80 and 40 mgL-1 at 20°C are proposed for SF and PPO, respectively. These combination treatments utilize SF's efficacy against the larval stage along with PPO's superior ovicidal properties to provide enhanced treatment efficacy over each product alone against all life stages of khapra beetle.


Subject(s)
Coleoptera , Animals , Epoxy Compounds , Larva , Sulfinic Acids
6.
Pestic Biochem Physiol ; 171: 104742, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33357564

ABSTRACT

Long-lasting insecticide treated netting (LLIN) has a number of potential uses for the control of insect pests. Using such netting, stored products may be protected from insects including the khapra beetle (Trogoderma granarium Everts, Coleoptera: Dermestidae) a widespread pest of many agricultural commodities. Here we first examined whether brief exposures of larvae to LLIN, for less than 30 min, decreased the chance of eventual adult emergence compared to larvae exposed on untreated netting. Next, we observed the responses of larvae that were either not exposed to any netting, exposed to untreated netting, or exposed to LLIN for 10 min and then placed in a wind tunnel and monitored for movement toward a stimulus. The wind-tunnel assay was performed either with or without a lure containing kairomones and pheromones known to be attractive to larvae of this species. There was little effect of the LLIN on adult emergence of exposed larvae. However, there were interacting effects of untreated netting and LLIN relating to thigmotaxis and anemotaxis. Larvae not exposed to netting showed increased likelihood of walking upwind if the semiochemical lure was provided, as expected. A similar pattern was observed when the untreated netting was used, but the larvae became more likely to remain stationary in the assay after acclimating to the net. When LLIN was used, the larvae became more likely to move and there was a baseline increase in the likelihood of moving upwind. However, upwind walking was no longer related to semiochemical presentation. These observations suggest that particular care should be used in relation to the airflow patterns and semiochemical landscape of the warehouse settings in which LLIN is deployed.


Subject(s)
Coleoptera , Insecticides , Animals , Insecta , Insecticides/toxicity , Larva
7.
Insects ; 11(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549285

ABSTRACT

Phytosanitary irradiation (PI) has been successfully used to disinfest fresh commodities and facilitate international agricultural trade. Critical aspects that may reduce PI efficacy must be considered to ensure the consistency and effectiveness of approved treatment schedules. One factor that can potentially reduce PI efficacy is irradiation under low oxygen conditions. This factor is particularly important because storage and packaging of horticultural commodities under low oxygen levels constitute practices widely used to preserve their quality and extend their shelf life. Hence, international organizations and regulatory agencies have considered the uncertainties regarding the efficacy of PI doses for insects infesting fresh commodities stored under low oxygen levels as a rationale for restricting PI application under modified atmosphere. Our research examines the extent to which low oxygen treatments can reduce the efficacy of phytosanitary irradiation for tephritids naturally infesting fruits. The effects of normoxia (21% O2), hypoxia (~5% O2), and severe hypoxia (< 0.5% O2) on radiation sensitivity of third instars of Anastrepha fraterculus (sensu lato), A. ludens (Loew), Bactrocera dorsalis (Hendel), and Ceratitis capitata (Wiedemann) were evaluated and compared at several gamma radiation doses. Our findings suggest that, compared to normoxia, hypoxic and severe-hypoxic conditioning before and during irradiation can increase adult emergence and contribute to advancement of larval development of tephritid fruit flies only at low radiation doses that are not used as phytosanitary treatments. With phytosanitary irradiation doses approved internationally for several tephritids, low oxygen treatments applied before and during irradiation did not increase the emergence rates of any fruit fly species evaluated, and all treated insects died as coarctate larvae. Thus, the findings of our research support a re-evaluation of restrictions related to phytosanitary irradiation application under modified atmospheres targeting tephritid fruit flies.

8.
J Econ Entomol ; 113(3): 1183-1194, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32304325

ABSTRACT

Although international regulations have been successfully implemented to reduce the introduction and spread of plant pests through wood packaging material (WPM), wood-boring insects continue to be intercepted in WPM at U.S. ports of entry. Both hardwoods and softwoods are used in the construction of WPM for international trade; however, it is not clear if some types of wood pose higher risks than others for harboring wood borers. This study documented the taxonomic diversity of infested wood genera intercepted as a result of targeted WPM inspection at U.S. ports, and identified many of the wood-boring insects transported within them. The results of this study reveal associations among packaging woods, commodities, and shipment origins. The wood genera most frequently infested were Pinus Linnaeus (Pinales: Pinaceae), Picea Miller (Pinales: Pinaceae), and Populus Linnaeus (Malpighiales: Salicaceae), which were heavily represented as packaging for commodities such as stone, metal, vehicles, and machinery. In addition to these results, we summarized preferences by the wood borers to develop in living, stressed, dying, or dead hosts, the pest status of intercepted wood borers in their native and non-native ranges, and potential host range of intercepted wood borers to gauge potential for these taxa to become pests in North America. New possible host associations are reported for eight wood borer taxa. Taxonomy of host wood is presented as a new factor for consideration in pathway-level risk analysis of WPM, and the findings further reinforce the need for enhanced compliance with ISPM 15 to reduce entry of non-native wood-boring insects.


Subject(s)
Coleoptera , Wood , Animals , Commerce , Insecta , Internationality , North America , Trees
9.
J Econ Entomol ; 113(3): 1176-1182, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32161970

ABSTRACT

The Anastrepha fraterculus (Wiedemann) complex is currently comprised of at least eight morphotypes, including several that are likely to be described as new species. It is critical to evaluate whether the morphotypes differ in tolerance to phytosanitary treatments. Temperatures from 0 to 3°C are used as a phytosanitary treatment for some commodities exported from the region and at risk of infestation by the A. fraterculus complex. Description of A. fraterculus morphotypes as new species could result in the annulation of phytosanitary treatment schedules for the new species. This study compared the relative cold tolerance of five populations from three morphotypes of the A. fraterculus complex: Andean, Peruvian, and Brazilian-1. Both a laboratory and wild strain of the Brazilian-1 morphotype were studied. Differences in mortality of third instars of the five A. fraterculus populations reared on nectarines were observed only with short treatment durations at temperatures ranging from 1.38 ± 0.04°C to 1.51 ± 0.08°C (mean ± SEM). Estimated times to achieve the LT99.99682 (probit 9) showed that Brazilian-1 wild, Brazilian-1 laboratory, and Cusco population were the most cold tolerant, followed by Andean and Peruvian, the least cold tolerant morphotype (i.e., Brazilian-1 wild = Brazilian-1 laboratory = Cusco population > Andean > Peruvian). These findings suggest that the current cold treatment schedules of 15 d at ≤ 1.11°C and 17 d at ≤ 1.67°C can be applied as cold treatments to any potential new species that may arise from the A. fraterculus complex.


Subject(s)
Tephritidae , Animals , Brazil , Cold Temperature , Fruit
10.
Insects ; 10(5)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121835

ABSTRACT

New insecticide treatment options would be beneficial for control programs for Trogoderma granarium Everts, the khapra beetle, in the United States. Two insecticides were evaluated, the Polyzone® formulation of deltamethrin and a formulation of the insect growth regulator methoprene combined with deltamethrin and the synergist piperonyl butoxide. In the test with Polyzone® deltamethrin, concrete arenas were treated with a low and high rate, and held outside, inside a shed, or inside a lab. Compared to storage in the lab, residue degradation increased slightly in the shed, and then further outside, as evidenced by greater larval survival and adult emergence. Across all environmental treatments, the high rate was more effective than the lower rate. For the combination methoprene product, the effect of food contact with treated surfaces was examined. When treating arenas with food and transferring the food to clean dishes, there was no immediate effect on larval survival, but there was a reduction in survival and emergence to the adult stage after one month. For both tests, larvae apparently often went into diapause after they were introduced onto the treatment arenas. Both treatments could be utilized in management programs if T. granarium infestations are detected.

11.
Environ Entomol ; 48(3): 496-505, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30951581

ABSTRACT

The European gypsy moth, Lymantria dispar L., is an invasive insect in North America that feeds on over 300 species of trees and shrubs and occasionally causes extensive defoliation. One regulatory practice within quarantine zones to slow the spread of this insect recommends that wood products (e.g., logs, pulpwood) originating from quarantine areas are staged within 100 foot-radius buffer zones devoid of host vegetation before transport outside the quarantine boundary. Currently, there are little data underpinning the distance used. We conducted field experiments in Wisconsin to assess buffer zone efficacy in reducing risk of larval gypsy moth encroachment on wood staging areas. We released late-instar gypsy moth larvae in groups around the perimeter of a 100-ft radius zone and tracked their movements for 10-h periods using harmonic radar and tested whether host vegetation staged around the perimeter or food availability before release altered movement patterns. Three larvae moved over 300 ft in 10 h, but 93% of larvae moved <100 ft total. The presence of host vegetation reduced the likelihood of larvae entering the buffer zone by 70%. Food availability before release did not affect movement. Using these field data, we parameterized a Monte Carlo simulation model to evaluate risk of larvae crossing zones of different sizes. For zones >100 ft in radius, <4% of larvae reached the center. This percentage decreased as zone size increased. Implications of these results for the regulatory practices of the gypsy moth quarantine are discussed.


Subject(s)
Moths , Animals , Larva , North America , Wisconsin
12.
J Econ Entomol ; 112(1): 127-133, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30346545

ABSTRACT

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is arguably the most significant and studied quarantine pest of fresh fruits. There is well over a century of research observations on its response to cold, first as it pertains to shipment of fruits using cold temperatures to preserve fruit quality and how that may aid the survival and distribution of the pest, and then the use of colder temperatures to kill the pest in fruit shipments. Cold tolerance at 1.1°C in three populations of C. capitata generally increased as the insect developed; therefore, the third instar is the most tolerant of the stages that are found in fruit. The three populations did not differ in cold tolerance, indicating that cold phytosanitary treatments against this pest can be harmonized regardless of country of origin of marketed fruit hosts. This study facilitated the approval of some cold treatment schedules for the International Plant Protection Convention treatment manual that were being held up by concerns of possible differences in cold tolerance among C. capitata populations from different countries and points toward the possibility of generic, broadly applicable phytosanitary cold treatments. Most larvae found alive after 9 d of cold treatment did not pupariate and fewer still emerged as adults, indicating that acute larval mortality need not always be the objective of a cold phytosanitary treatment to be efficacious in preventing the establishment of invasive species.


Subject(s)
Ceratitis capitata , Insect Control/methods , Animals , Cold Temperature
13.
Sci Rep ; 7: 40316, 2017 01 16.
Article in English | MEDLINE | ID: mdl-28091577

ABSTRACT

Global trade facilitates the inadvertent movement of insect pests and subsequent establishment of populations outside their native ranges. Despite phytosanitary measures, nonnative insects arrive at United States (U.S.) ports of entry as larvae in solid wood packaging material (SWPM). Identification of wood-boring larval insects is important for pest risk analysis and management, but is difficult beyond family level due to highly conserved morphology. Therefore, we integrated DNA barcoding and rearing of larvae to identify wood-boring insects in SWPM. From 2012 to 2015, we obtained larvae of 338 longhorned beetles (Cerambycidae) and 38 metallic wood boring beetles (Buprestidae) intercepted in SWPM associated with imported products at six U.S. ports. We identified 265 specimens to species or genus using DNA barcodes. Ninety-three larvae were reared to adults and identified morphologically. No conflict was found between the two approaches, which together identified 275 cerambycids (23 genera) and 16 buprestids (4 genera). Our integrated approach confirmed novel DNA barcodes for seven species (10 specimens) of woodborers not in public databases. This study demonstrates the utility of DNA barcoding as a tool for regulatory agencies. We provide important documentation of potential beetle pests that may cross country borders through the SWPM pathway.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/classification , DNA Barcoding, Taxonomic/methods , Product Packaging , Wood/parasitology , Animals , Bayes Theorem , Coleoptera/genetics , Geography , Larva/physiology , Phylogeny , United States
14.
J Econ Entomol ; 110(1): 67-79, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28028169

ABSTRACT

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is arguably the most important tephritid attacking fruits after Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). In 2003 it was found in Africa and quickly spread to most of the sub-Saharan part of the continent, destroying fruits and creating regulatory barriers to their export. The insect is causing new nutritional and economic losses across Africa, as well as the losses it has caused for decades in infested areas of Asia, New Guinea, and Hawaii. This new panorama represents a challenge for fruit exportation from Africa. Phytosanitary treatments are required to export quarantined commodities out of infested areas to areas where the pest does not exist and could become established. This paper describes current phytosanitary treatments against B. dorsalis and their use throughout the world, the development of new treatments based on existing research, and recommendations for further research to provide phytosanitary solutions to the problem.


Subject(s)
Insect Control/methods , Tephritidae , Animals , Cold Temperature , Fumigation , Hot Temperature , Insect Control/instrumentation , Radiation, Ionizing , Tephritidae/classification
15.
J Econ Entomol ; 109(6): 2341-2347, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27660425

ABSTRACT

To compare relative cold treatment tolerance across the economically important tephritid fruit flies (Diptera: Tephritidae), Bactrocera carambolae Drew & Hancock, Bactrocera correcta (Bezzi), Bactrocera cucurbitae (Coquillett), four populations of Bactrocera dorsalis (Hendel), Bactrocera zonata (Saunders), and Bactrocera tryoni (Froggatt), eggs (in vitro), and larvae (in infested fruit or on carrot diet) were cold treated at 2.0 ± 0.2 °C for selected durations. The study was performed to assess whether a single (i.e., generic) cold treatment could be developed that would control the entire group of fruit flies that were tested. Probit regression models showed that the hierarchy of cold resistance was third-instar larvae reared on carrot diet > third-instar larvae reared on orange > eggs test in vitro. Differences in mortality responses of third-instar larvae reared in oranges across populations of B. dorsalis were observed only at subefficacious levels of control. The majority of Bactrocera species responded the same at the high levels of control demanded of phytosanitary treatments, which indicated that cold treatments would be similarly effective across the species and populations tested. B. cucurbitae was found to be the most cold tolerant of all the species tested.


Subject(s)
Cold Temperature/adverse effects , Insect Control/methods , Tephritidae/physiology , Animals , Larva/physiology , Ovum/physiology , Species Specificity , Tephritidae/growth & development
16.
J Econ Entomol ; 106(4): 1608-12, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24020272

ABSTRACT

Phytosanitary cold treatments were tested for Bactrocera invadens Drew, Tsuruta, and White and Bactrocera zonata (Saunders) using comparisons with Ceratitis capitata (Wiedemann). Oranges were infested by puncturing holes in the peel and allowing tephritids to oviposit in the holes. The treatments were initiated when the larvae reached late third instar because previous research had shown that stage to be the most cold tolerant for all three species. Results show that B. invadens is not more cold tolerant than C. capitata and B. zonata at 1.0 +/- 0.1 degrees C and lend support to the use of C. capitata cold treatment schedules for B. invadens. It cannot be concluded that B. zonata is not more cold tolerant than C. capitata.


Subject(s)
Citrus sinensis/growth & development , Insect Control , Tephritidae , Acclimatization , Animals , Ceratitis capitata , Cold Temperature , Fruit/growth & development , Larva , Species Specificity
17.
J Econ Entomol ; 106(4): 1613-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24020273

ABSTRACT

Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to phosphine fumigations under normal atmospheric and elevated oxygen levels in laboratory-scale chamber experiments to compare their susceptibilities to the two different fumigation methods. In fumigations conducted under atmospheric oxygen at 5 and 10 degrees C, egg survivorship decreased with increase in phosphine concentration but then increased at a concentration of 3,000 ppm; this increase was significant at 10 degrees C. Based on egg survivorship data, phosphine fumigations conducted in a 60% oxygen atmosphere were significantly more effective than those conducted under atmospheric oxygen conditions. Oxygenated phosphine fumigations at 5 and 10 degrees C killed all 1,998 and 2,213 E. postvittana eggs treated, respectively, after 72 h of exposure. These results indicate the great potential of oxygenated phosphine fumigation for the control of E. postvittana eggs.


Subject(s)
Atmosphere/chemistry , Fumigation , Insecticides , Moths , Phosphines , Animals , California , Ovum , Oxygen/analysis
18.
J Econ Entomol ; 106(3): 1155-63, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23865179

ABSTRACT

Methyl bromide (MB) chamber fumigations were evaluated for postharvest control of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), in fresh fruit destined for export from California. To simulate external feeding, larvae were contained in gas-permeable cages and distributed throughout loads of peaches, plums, nectarines (all Prunus spp.), apples (Malus spp.), raspberries (Rubus spp.), or grapes (Vitis spp.). Varying the applied MB dose and the differential sorption of MB by the loads resulted in a range of exposures, expressed as concentration x time cross products (CTs) that were verified by gas-chromatographic quantification of MB in chamber headspace over the course of each fumigation. CTs > or = 60 and > or = 72 mg liter(-1) h at 10.0 +/- 0.5 and 15.6 +/- 0.5 degrees C (x +/- s, average +/- SD), respectively, yielded complete mortality of approximately 6,200 larvae at each temperature. These confirmatory fumigations corroborate E. postvittana mortality data for the first time in relation to measured MB exposures and collectively comprise the largest number of larval specimens tested to date. In addition, akinetic model of MB sorption was developed for the quarantine fumigation of fresh fruit based on the measurement of exposures and how they varied across the fumigation trials. The model describes how to manipulate the applied MB dose, the load factor, and the load geometry for different types of packaged fresh fruit so that the resultant exposure is adequate for insect control.


Subject(s)
Hydrocarbons, Brominated , Insect Control/methods , Insecticides , Moths , Rosaceae , Vitis , Absorption , Animals , California , Chromatography, Gas , Dose-Response Relationship, Drug , Fruit , Fumigation/methods , Hydrocarbons, Brominated/analysis , Insecticides/analysis , Larva , Models, Theoretical , Temperature , Time Factors
19.
J Econ Entomol ; 106(6): 2336-40, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24498731

ABSTRACT

The peach fruit fly, Bactrocera zonata (Saunders), attacks a wide range of tree fruits in countries from Egypt to Vietnam and is occasionally trapped in the United States. Phytosanitary treatments may be required to export fruit hosts of this insect from countries where it is endemic to countries where it is absent but could become established. This research describes comparative studies to determine if B. zonata could be phytosanitarily controlled by cold treatment schedules existing for Ceratitis capitata (Wiedemann) and Anastrepha ludens (Loew), and the development of a cold treatment of 18 d at 1.7 degrees C for B. zonata infesting oranges. Fruit were infested by puncturing holes in oranges and allowing tephritids to oviposit in the holes. The treatments were initiated when the larvae reached late third instar because previous research had shown that stage to be the most cold-tolerant. B. zonata was not found to be confidently as or less cold tolerant than C. capitata; therefore, treatment schedules for the latter are not supported by this research for the former. B. zonata was found to be more susceptible to 1.7 degrees C than A. ludens; therefore, the use of treatment schedules for A. ludens is supported by this research for B. zonata. However, the treatment for A. ludens requires 22 d. A shorter treatment was verified for B. zonata when 36,820 third instars reared from the eggs in oranges were stored at 1.7 degrees C for 18 d with no larvae moving on examination 24 h after removal from the cold treatment chamber.


Subject(s)
Citrus sinensis/growth & development , Insect Control , Tephritidae , Animals , Cold Temperature , Fruit/growth & development , Larva , Species Specificity
20.
J Econ Entomol ; 104(1): 21-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404834

ABSTRACT

Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) is spreading throughout central Africa attacking a variety of fruit; quarantines are placed on fruit from this region that are considered hosts. The only phytosanitary treatment that is commercially available is an ionizing irradiation treatment for all Tephritidae at 150 Gy. The development of other treatments, such as heat, cold, or fumigation, usually requires testing tens of thousands of insects at a dose that provides efficacy and may take several years. It may be possible to shorten the time required to develop treatments by comparing tolerance of a new quarantine pest to tolerances of pests with similar behaviors and modes of infestation for which treatment schedules are available. Cold and heat tolerance ofB. invadens was compared with tolerance of Anastrepha ludens (Loew), Bactrocera dorsalis (Hendel), and Ceratitis capitata (Wiedemann) in vitro. Third-instar B. invadens was no more cold tolerant than the other species when treated in diet at 0.94 +/- 0.65 degrees C and no more heat tolerant than C. capitata when immersed in vials in water at 44.7 +/- 0.1 degrees C. The data at 0.94 +/- 0.65 degrees C was used to include B. invadens in a USDA cold treatment schedule for citrus fruit from Africa so that trade would not be interrupted while protecting U.S. agriculture from this invasive pest.


Subject(s)
Cold Temperature , Hot Temperature , Tephritidae , Animals , Introduced Species , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...