Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e16824, 2024.
Article in English | MEDLINE | ID: mdl-38436005

ABSTRACT

Authors are often faced with the decision of whether to maximize traditional impact metrics or minimize costs when choosing where to publish the results of their research. Many subscription-based journals now offer the option of paying an article processing charge (APC) to make their work open. Though such "hybrid" journals make research more accessible to readers, their APCs often come with high price tags and can exclude authors who lack the capacity to pay to make their research accessible. Here, we tested if paying to publish open access in a subscription-based journal benefited authors by conferring more citations relative to closed access articles. We identified 146,415 articles published in 152 hybrid journals in the field of biology from 2013-2018 to compare the number of citations between various types of open access and closed access articles. In a simple generalized linear model analysis of our full dataset, we found that publishing open access in hybrid journals that offer the option confers an average citation advantage to authors of 17.8 citations compared to closed access articles in similar journals. After taking into account the number of authors, Journal Citation Reports 2020 Quartile, year of publication, and Web of Science category, we still found that open access generated significantly more citations than closed access (p < 0.0001). However, results were complex, with exact differences in citation rates among access types impacted by these other variables. This citation advantage based on access type was even similar when comparing open and closed access articles published in the same issue of a journal (p < 0.0001). However, by examining articles where the authors paid an article processing charge, we found that cost itself was not predictive of citation rates (p = 0.14). Based on our findings of access type and other model parameters, we suggest that, in the case of the 152 journals we analyzed, paying for open access does confer a citation advantage. For authors with limited budgets, we recommend pursuing open access alternatives that do not require paying a fee as they still yielded more citations than closed access. For authors who are considering where to submit their next article, we offer additional suggestions on how to balance exposure via citations with publishing costs.


Subject(s)
Atrial Premature Complexes , Open Access Publishing , Humans , Salaries and Fringe Benefits , Benchmarking , Biology
2.
Nucleic Acids Res ; 51(18): 9804-9820, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37650646

ABSTRACT

All cells employ a combination of endo- and exoribonucleases to degrade long RNA polymers to fragments 2-5 nucleotides in length. These short RNA fragments are processed to monoribonucleotides by nanoRNases. Genetic depletion of nanoRNases has been shown to increase abundance of short RNAs. This deleteriously affects viability, virulence, and fitness, indicating that short RNAs are a metabolic burden. Previously, we provided evidence that NrnA is the housekeeping nanoRNase for Bacillus subtilis. Herein, we investigate the biological and biochemical functions of the evolutionarily related protein, B. subtilis NrnB (NrnBBs). These experiments show that NrnB is surprisingly different from NrnA. While NrnA acts at the 5' terminus of RNA substrates, NrnB acts at the 3' terminus. Additionally, NrnA is expressed constitutively under standard growth conditions, yet NrnB is selectively expressed during endospore formation. Furthermore, NrnA processes only short RNAs, while NrnB unexpectedly processes both short RNAs and longer RNAs. Indeed, inducible expression of NrnB can even complement the loss of the known global 3'-5' exoribonucleases, indicating that it acts as a general exonuclease. Together, these data demonstrate that NrnB proteins, which are widely found in Firmicutes, Epsilonproteobacteria and Archaea, are fundamentally different than NrnA proteins and may be used for specialized purposes.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Exoribonucleases , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Phosphodiesterase I , RNA/metabolism
3.
Nucleic Acids Res ; 50(21): 12369-12388, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36478094

ABSTRACT

Bacterial RNases process RNAs until only short oligomers (2-5 nucleotides) remain, which are then processed by one or more specialized enzymes until only nucleoside monophosphates remain. Oligoribonuclease (Orn) is an essential enzyme that acts in this capacity. However, many bacteria do not encode for Orn and instead encode for NanoRNase A (NrnA). Yet, the catalytic mechanism, cellular roles and physiologically relevant substrates have not been fully resolved for NrnA proteins. We herein utilized a common set of reaction assays to directly compare substrate preferences exhibited by NrnA-like proteins from Bacillus subtilis, Enterococcus faecalis, Streptococcus pyogenes and Mycobacterium tuberculosis. While the M. tuberculosis protein specifically cleaved cyclic di-adenosine monophosphate, the B. subtilis, E. faecalis and S. pyogenes NrnA-like proteins uniformly exhibited striking preference for short RNAs between 2-4 nucleotides in length, all of which were processed from their 5' terminus. Correspondingly, deletion of B. subtilis nrnA led to accumulation of RNAs between 2 and 4 nucleotides in length in cellular extracts. Together, these data suggest that many Firmicutes NrnA-like proteins are likely to resemble B. subtilis NrnA to act as a housekeeping enzyme for processing of RNAs between 2 and 4 nucleotides in length.


Subject(s)
Exonucleases , Firmicutes , RNA , Bacterial Proteins/metabolism , Exonucleases/chemistry , Nucleotides , RNA/metabolism , Firmicutes/chemistry , Firmicutes/classification , Firmicutes/enzymology
4.
Org Biomol Chem ; 18(36): 7090-7093, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32915183

ABSTRACT

We disclose a method for sequential Conia-ene-type cyclization/Negishi coupling for the union of alkynyl ketones and aryl iodides. This process is promoted through cooperative actions of Lewis acidic B(C6F5)3, ZnI2, Pd-based complex, and a Brønsted basic amine. The three Lewis acid catalysts with potential overlapping functions play their independent roles as activators of carbonyl group, alkyne moiety, and alkenyl zinc intermediate, respectively. A variety of 1,2,3-substituted cyclopentenes can be synthesized with high efficiency.

5.
Adv Synth Catal ; 362(2): 360-364, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-32256276

ABSTRACT

An efficient deuteration process of α-C-H bonds in various carbonyl-based pharmaceutical compounds has been developed. Catalytic reactions are initiated by the action of Lewis acidic B(C6F5)3 and D2O, converting a drug molecule into the corresponding boron-enolate. Ensuing deuteration of the enolate by in situ-generated D2O+-H then results in the formation of α-deuterated bioactive carbonyl compounds with up to >98% deuterium incorporation.

SELECTION OF CITATIONS
SEARCH DETAIL
...