Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(41): 14820-14831, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34596657

ABSTRACT

Luminescence probes that facilitate multimodal non-contact measurements of temperature are of particular interest due to the possibility of cross-referencing results across different readout techniques. This intrinsic referencing is an essential addition that enhances accuracy and reliability of the technique. A further enhancement of sensor performance can be achieved by using two luminescent ions acting as independent emitters, thereby adding in-built redundancy to non-contact temperature sensing, using a single readout technique. In this study we combine both approaches by engineering a material with two luminescent ions that can be independently probed through different readout modes of non-contact temperature sensing. The approach was tested using Al2O3 co-doped with Cr3+ and Mn4+, exhibiting sharp emission lines due to 2E → 4A2 transitions. The temperature sensing performance was examined by measuring three characteristics: temperature-induced changes of the intensity ratio of the emission lines, their spectral position, and the luminescence decay time constant. The processes responsible for the changes with temperature of the measured luminescence characteristics are discussed in terms of relevant models. By comparing temperature resolutions achievable by different modes of temperature sensing it is established that in Al2O3-Cr,Mn spectroscopic methods provide the best measurement accuracy over a broad temperature range. A temperature resolution better than ±2.8 K can be achieved by monitoring the luminescence intensity ratio (40-145 K) and the spectral shift of the R-line of Mn4+ (145-300 K range).

2.
Sensors (Basel) ; 20(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942602

ABSTRACT

Luminescence methods for non-contact temperature monitoring have evolved through improvements of hardware and sensor materials. Future advances in this field rely on the development of multimodal sensing capabilities of temperature probes and extend the temperature range across which they operate. The family of Cr-doped oxides appears particularly promising and we review their luminescence characteristics in light of their application in non-contact measurements of temperature over the 5-300 K range. Multimodal sensing utilizes the intensity ratio of emission lines, their wavelength shift, and the scintillation decay time constant. We carried out systematic studies of the temperature-induced changes in the luminescence of the Cr3+-doped oxides Al2O3, Ga2O3, Y3Al5O12, and YAlO3. The mechanism responsible for the temperature-dependent luminescence characteristic is discussed in terms of relevant models. It is shown that the thermally-induced processes of particle exchange, governing the dynamics of Cr3+ ion excited state populations, require low activation energy. This then translates into tangible changes of a luminescence parameter with temperature. We compare different schemes of temperature sensing and demonstrate that Ga2O3-Cr is a promising material for non-contact measurements at cryogenic temperatures. A temperature resolution better than ±1 K can be achieved by monitoring the luminescence intensity ratio (40-140 K) and decay time constant (80-300 K range).

3.
Sci Rep ; 10(1): 8601, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32451515

ABSTRACT

Highly efficient scintillation crystals with short decay times are indispensable for improving the performance of numerous detection and imaging instruments that use- X-rays, gamma-quanta, ionising particles or neutrons. Halide perovskites emerged recently as very promising materials for detection of ionising radiation that motivated further exploration of the materials. In this work, we report on excellent scintillation properties of CsPbBr3 crystals when cooled to cryogenic temperatures. The temperature dependence of luminescence spectra, decay kinetics and light yield under excitation with X-rays and α-particles was investigated. It is shown that the observed changes of spectral and kinetic characteristics of the crystal with temperature can be consistently explained by radiative decay of free excitons, bound and trapped excitons as well as electron-hole pairs originating from their disintegration. It has been found that the crystal exhibits a fast decay time constant of 1 ns at 7 K. The scintillation light yield of CsPbBr3 at 7 K is assessed to be 50,000 ± 10,000 ph/MeV at excitation with 12 keV X-rays and 109,000 ± 22,000 ph/MeV at excitation with α-particles of 241Am. This finding places CsPbBr3 in an excellent position for the development of a new generation of cryogenic, efficient scintillation detectors with nanosecond response time, marking a step-change in opportunities for scintillator-based applications.

4.
Sci Rep ; 9(1): 5274, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30918345

ABSTRACT

Realtime in situ temperature monitoring in difficult experimental conditions or inaccessible environments is critical for many applications. Non-contact luminescence decay time thermometry is often the method of choice for such applications due to a favorable combination of sensitivity, accuracy and robustness. In this work, we demonstrate the feasibility of an ultrafast PbI2 scintillator for temperature determination, using the time structure of X-ray radiation, produced by a synchrotron. The decay kinetics of the scintillations was measured over the 8-107 K temperature range using monochromatic pulsed X-ray excitation. It is found that lead iodide exhibits a very fast and intense scintillation response due to excitons and donor-acceptor pairs, with the fast decay component varying between 0.08 and 0.5 ns - a feature that can be readily exploited for temperature monitoring. The observed temperature dependence of the decay time is discussed in terms of two possible mechanisms of thermal quenching - transition over activation barrier and phonon-assisted escape. It is concluded that the latter provides a better fit to the experimental results and is consistent with the model of luminescence processes in PbI2. We evaluated the sensitivity and estimated the accuracy of the temperature determination as ca. ±6 K at 107 K, improving to ±1.4 K at 8 K. The results of this study prove the feasibility of temperature monitoring, using ultrafast scintillation of PbI2 excited by X-ray pulses from a synchrotron, thus enabling non-contact in-situ cryothermometry with megahertz sampling rate.

5.
J Synchrotron Radiat ; 24(Pt 3): 636-645, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28452755

ABSTRACT

Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (<0.05 mm3) located in very close proximity to the sample under test. In this work the underlying principle of cryogenic luminescence lifetime thermometry is presented, the features of the detection method and the choice of temperature sensor are discussed, and it is demonstrated how the temperature monitoring system was integrated within the viewing system of the endstation used for the visualization of protein crystals. The thermometry system was characterized using a Bi4Ge3O12 crystal scintillator that exhibits good responsivity of the decay time constant as a function of temperature over a wide range (8-270 K). The scintillation sensor was calibrated and the uncertainty of the temperature measurements over the primary operation temperature range of the beamline (30-150 K) was assessed to be ±1.6 K. It has been shown that the temperature of the sample holder, measured using the luminescence sensor, agrees well with the expected value. The technique was applied to characterize the thermal performance of different sample mounts that have been used in MX experiments at the I23 beamline. The thickness of the mount is shown to have the greatest impact upon the temperature distribution across the sample mount. Altogether, these tests and findings demonstrate the usefulness of the thermometry system in highlighting the challenges that remain to be addressed for the in-vacuum MX experiment to become a reliable and indispensable tool for structural biology.

6.
Rev Sci Instrum ; 83(3): 034902, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22462947

ABSTRACT

Thermal contact conductance (TCC) at material interfaces has a great impact upon the efficiency of cooling in cryogenic instruments, and is thus a crucial design parameter. Lack of reliable numerical data for demountable in vacuum bare (uncoated, dry, and without interposers) copper-copper joints prompted us to carry out systematic studies of TCC over the temperature range 14-100 K. We measured TCC as function of applied force for the contacts with surface roughness R(a) = 0.2, 1.6, and 3.2 µm. It is seen that with increasing temperature, the TCC of bare Cu-Cu contact initially rises following a generic power law dependency T(γ) with γ = 1.25 ± 0.02, reaching a maximum value at 40-50 K. TCC then decreases as temperature continues to rise towards 100 K. We show results that match those in the literature from low (4-20 K) and high (100-300 K) temperature domains, resulting in a unified smooth curve of temperature dependency of TCC for bare Cu-Cu joints. Temperature dependence is then described in a phenomenological model, accounting for the effects of changes in bulk conductivity and surface hardness with temperature. This model consistently explains the observed power law dependence of TCC as function of applied force and changes caused by roughness of contact surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...