Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 115(6): 1428-1440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493369

ABSTRACT

In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].


Subject(s)
Area Under Curve , Atorvastatin , Cytochrome P-450 CYP3A , Genome-Wide Association Study , Glucuronosyltransferase , Liver-Specific Organic Anion Transporter 1 , Polymorphism, Single Nucleotide , Adult , Female , Humans , Male , Middle Aged , Young Adult , Atorvastatin/pharmacokinetics , Atorvastatin/blood , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genotype , Glucuronosyltransferase/genetics , Healthy Volunteers , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Liver-Specific Organic Anion Transporter 1/genetics , Pharmacogenomic Variants , LIM Domain Proteins/genetics , Cytoskeletal Proteins/genetics
2.
Clin Pharmacol Ther ; 112(3): 676-686, 2022 09.
Article in English | MEDLINE | ID: mdl-35652242

ABSTRACT

We investigated genetic determinants of single-dose simvastatin pharmacokinetics in a prospective study of 170 subjects and a retrospective cohort of 59 healthy volunteers. In a microarray-based genomewide association study with the prospective data, the SLCO1B1 c.521T>C (p.Val174Ala, rs4149056) single nucleotide variation showed the strongest, genomewide significant association with the area under the plasma simvastatin acid concentration-time curve (AUC; P = 6.0 × 10-10 ). Meta-analysis with the retrospective cohort strengthened the association (P = 1.6 × 10-17 ). In a stepwise linear regression candidate gene analysis among all 229 participants, SLCO1B1 c.521T>C (P = 1.9 × 10-13 ) and CYP3A4 c.664T>C (p.Ser222Pro, rs55785340, CYP3A4*2, P = 0.023) were associated with increased simvastatin acid AUC. Moreover, the SLCO1B1 c.463C>A (p.Pro155Thr, rs11045819, P = 7.2 × 10-6 ) and c.1929A>C (p.Leu643Phe, rs34671512, P = 5.3 × 10-4 ) variants associated with decreased simvastatin acid AUC. Based on these results and the literature, we classified the volunteers into genotype-predicted OATP1B1 and CYP3A4 phenotype groups. Compared with the normal OATP1B1 function group, simvastatin acid AUC was 273% larger in the poor (90% confidence interval (CI), 137%, 488%; P = 3.1 × 10-6 ), 40% larger in the decreased (90% CI, 8%, 83%; P = 0.036), and 67% smaller in the highly increased function group (90% CI, 46%, 80%; P = 2.4 × 10-4 ). Intermediate CYP3A4 metabolizers (i.e., heterozygous carriers of either CYP3A4*2 or CYP3A4*22 (rs35599367)), had 87% (90% CI, 39%, 152%, P = 6.4 × 10-4 ) larger simvastatin acid AUC than normal metabolizers. These data suggest that in addition to no function SLCO1B1 variants, increased function SLCO1B1 variants and reduced function CYP3A4 variants may affect the pharmacokinetics, efficacy, and safety of simvastatin. Care is warranted if simvastatin is prescribed to patients carrying decreased function SLCO1B1 or CYP3A4 alleles.


Subject(s)
Organic Anion Transporters , Simvastatin , Cytochrome P-450 CYP3A/genetics , Genotype , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Organic Anion Transporters/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Retrospective Studies , Simvastatin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...