Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 876: 162839, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36921856

ABSTRACT

Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg-1 and 16,730 µg L-1, respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland. Carbon and other macronutrient (N, P, K) concentrations in peat and pore water significantly increased with distance from contamination. Relative percent cover and species richness of vascular and non-vascular plants significantly increased with distance into the wetland, with higher non-vascular richness being found at intermediate distances before transitioning to a vascular plant dominated community. Bacterial and archaeal community composition exhibited a decreased proportion of members of the phylum Acidobacteria (notably of the order Acidobacteriales) and increased diversity and richness of methanogens across a larger range of orders farther from the tailings source, an indication of microbial C-cycling potential. Consistent with changes in microbial communities, in vitro microbial CH4 production potential significantly increased with distance from the contaminant source. This study demonstrates both the profound negative impact that metalliferous tailings contamination can have on above and belowground communities in peatlands, and the value of wetland preservation and restoration.


Subject(s)
Arsenic , Microbiota , Wetlands , Soil/chemistry , Water , Carbon
2.
Proc Natl Acad Sci U S A ; 119(41): e2202261119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36206369

ABSTRACT

Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.


Subject(s)
Greenhouse Gases , Viruses , Amino Sugars/metabolism , Bacteria/genetics , Bacteria/metabolism , Carbon/metabolism , Carbon Cycle , Greenhouse Gases/metabolism , Lakes/microbiology , Viruses/genetics , Viruses/metabolism , Water/metabolism
3.
Int J Phytoremediation ; 24(9): 963-974, 2022.
Article in English | MEDLINE | ID: mdl-34647850

ABSTRACT

Facilitating the establishment of native pioneer plant species on mine tailings with inherent metal and/or acid tolerance is important to speed up natural succession at minimal cost, especially in remote areas where phytoremediation can be labor intensive. We investigated vegetation community dynamics after ∼48 years of succession along two legacy Ni-Cu mine tailings and waste rock deposits in the Sudbury Basin, Ontario, Canada with and without various site amendments (i.e. liming and fertilization) and planting. Metal/acid tolerant pioneer plants (Betula papyrifera, Populus tremuloides, Pohlia nutans) appeared to facilitate the establishment of less tolerant species. Conifers and nitrogen-fixers less tolerant to site conditions were planted at the fully amended (limed, fertilized, planted) mine tailings site in the 1970s, but conifers were not propagating at the site or facilitating understory succession. The planted nitrogen-fixing leguminous species Lotus corniculatus was, however, associated with increased diversity. These findings have implications for long-term reclamation strategies in acidic mine waste deposits utilizing native species, as primary colonizing tree species are only recently emerging as candidates for phytoremediation. Novelty statement The potential for native species to act as facilitators for vegetation colonization has rarely been investigated on tailings, despite wide use in remediation of less toxic sites. This study provides a retrospective of over 40 years of plant growth following initial treatment of toxic tailings. We observed that regardless of tailings geochemical conditions, acid/metal tolerant pioneer plants were facilitating ecological succession on acidic Ni-Cu mine tailings sites.


Subject(s)
Soil Pollutants , Biodegradation, Environmental , Metals , Nitrogen , Plants , Retrospective Studies , Soil , Soil Pollutants/analysis
4.
Front Microbiol ; 12: 660190, 2021.
Article in English | MEDLINE | ID: mdl-34603222

ABSTRACT

Mine tailings host dynamic biogeochemical processes that can mobilize a range of elements from the host material and release them into the environment through acidic, neutral, or alkaline mine drainage. Here we use a combination of mineralogical, geochemical, and microbiological techniques that provide a better understanding of biogeochemical processes within the surficial layers of neutral cobalt and arsenic-rich tailings material at Cobalt, ON, Canada. Tailings material within 30-cm depth profiles from three tailings sites (sites A, B, and C) were characterized for their mineralogical, chemical and microbial community compositions. The tailings material at all sites contains (sulf)arsenides (safflorite, arsenopyrite), and arsenates (erythrite and annabergite). Site A contained a higher and lower amount of (sulf)arsenides and arsenates than site B, respectively. Contrary to site A and B, site C depicted a distinct zoning with (sulf)arsenides found in the deeper reduced zone, and arsenates occurring in the shallow oxidized zone. Variations in the abundance of Co+As+Sb+Zn (Co#), Fe (Fe#), total S (S#), and average valence of As indicated differences in the mineralogical composition of the tailings material. For example, material with a high Co#, lo Fe# and high average valence of As commonly have a higher proportion of secondary arsenate to primary (sulf)arsenide minerals. Microbial community profiling indicated that the Cobalt tailings are primarily composed of Actinobacteria and Proteobacteria, and known N, S, Fe, methane, and possible As-cycling bacteria. The tailings from sites B and C had a larger abundance of Fe and S-cycling bacteria (e.g., Sulfurifustis and Thiobacillus), which are more abundant at greater depths, whereas the tailings of site A had a higher proportion of potential As-cycling and -resistant genera (e.g., Methylocystis and Sphingomonas). A multi-variate statistical analysis showed that (1) distinct site-specific groupings occur for the Co # vs. Fe #, Co# vs. S#'s and for the microbial community structure and (2) microbial communities are statistically highly correlated to depth, S#, Fe#, pH and the average valence of As. The variation in As valence correlated well with the abundance of N, S, Fe, and methane-cycling bacteria. The results of this study provide insights into the complex interplay between minerals containing the critical element cobalt, arsenic, and microbial community structure in the Cobalt Mining Camp tailings.

5.
Environ Microbiol ; 23(7): 3384-3400, 2021 07.
Article in English | MEDLINE | ID: mdl-31943734

ABSTRACT

The Gypsum Hill (GH) springs on Axel Heiberg Island in the Canadian high Arctic are host to chemolithoautotrophic, sulfur-oxidizing streamers that flourish in the high Arctic winter in water temperatures from -1.3 to 7°C with ~8% salinity in a high Arctic winter environment with air temperatures commonly less than -40°C and an average annual air temperature of -15°C. Metagenome sequencing and binning of streamer samples produced a 96% complete Thiomicrorhabdus sp. metagenome-assembled genome representing a possible new species or subspecies. This is the most cold- and salt-extreme source environment for a Thiomicrorhabdus genome yet described. Metaproteomic and metatranscriptomic analysis attributed nearly all gene expression in the streamers to the Thiomicrorhabdus sp. and suggested that it is active in CO2 fixation and oxidation of sulfide to elemental sulfur. In situ geochemical and isotopic analyses of the fractionation of multiple sulfur isotopes determined the biogeochemical transformation of sulfur from its source in Carboniferous evaporites to biotic processes occurring in the sediment and streamers. These complementary molecular tools provided a functional link between the geochemical substrates and the collective traits and activity that define the microbial community's interactions within a unique polar saline habitat where Thiomicrorhabdus-dominated streamers form and flourish.


Subject(s)
Sulfur , Canada , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
6.
ISME J ; 14(8): 2153-2163, 2020 08.
Article in English | MEDLINE | ID: mdl-32424248

ABSTRACT

Shallow lake sediments harbor methanogen communities that are responsible for large amounts of CH4 flux to the atmosphere. These communities play a major role in degrading in-fluxed terrestrial organic matter (t-OM)-much of which settles in shallow near-shore sediments. Little work has examined how sediment methanogens are affected by the quantity and quality of t-OM, and the physicochemical factors that shape their community. Here, we filled mesocosms with artificial lake sediments amended with different ratios and concentrations of coniferous and deciduous tree litter. We installed them in three boreal lakes near Sudbury, Canada that varied in trophic status and water clarity. We found that higher endogenous nutrient concentrations led to greater CH4 production when sediment solar irradiance was similar, but high irradiance of sediments also led to higher CH4 concentrations regardless of nutrient concentrations, possibly due to photooxidation of t-OM. Sediments with t-OM had overall higher CH4 concentrations than controls that had no t-OM, but there were no significant differences in CH4 concentrations with different t-OM compositions or increasing concentrations over 25%. Differences among lakes also explained variation in methanogen community structure, whereas t-OM treatments did not. Therefore, lake characteristics are important modulators of methanogen communities fueled by t-OM.


Subject(s)
Atmosphere , Lakes , Canada , China , Geologic Sediments
7.
Environ Pollut ; 264: 114680, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32416423

ABSTRACT

Mine tailings are found worldwide and can have significant impacts on ecosystem and human health. In this study, natural vegetation patterns on arsenical (As) gold (Au) mine tailings located in Sudbury, Ontario were assessed using transects located at the edge of the tailings and on the tailings. Vegetation communities were significantly different between the edge and open tailings areas of the site. Arsenic concentrations in both areas were extremely variable (from 285-17,567 mg/kg) but were not significantly correlated with vegetation diversity at the site. Nutrients (carbon (C), phosphorus (P)) and organic matter concentrations were associated with higher diversity and with the presence of climax vegetation on the tailings, but there were no significant relationships between tailings chemistry and vegetation indices on the edge. Encroachment onto the tailings from the edge occurred in conventional succession patterns, with a clear gradient from grasses (Agrostis gigantea) to trees such as Picea glauca. On the tailings, a nucleation pattern was visible, distinct from conventional succession. Trees and shrubs such as Betula papyrifera and Diervilla lonicera were associated with higher diversity and higher nutrient concentrations in the underlying tailings, whereas grasses such as A. gigantea were not. We concluded that at all areas of the site, vegetation - particularly trees - was facilitating amelioration of the underlying tailings. Despite high concentrations of As, nutrients appeared to have a greater influence than metals on vegetation diversity.


Subject(s)
Arsenic , Arsenicals , Ecosystem , Gold , Ontario , Soil
8.
ISME J ; 13(1): 1-11, 2019 01.
Article in English | MEDLINE | ID: mdl-30042502

ABSTRACT

How ecosystem functioning changes with microbial communities remains an open question in natural ecosystems. Both present-day environmental conditions and historical events, such as past differences in dispersal, can have a greater influence over ecosystem function than the diversity or abundance of both taxa and genes. Here, we estimated how individual and interactive effects of microbial community structure defined by diversity and abundance, present-day environmental conditions, and an indicator of historical legacies influenced ecosystem functioning in lake sediments. We studied sediments because they have strong gradients in all three of these ecosystem properties and deliver important functions worldwide. By characterizing bacterial community composition and functional traits at eight sites fed by discrete and contrasting catchments, we found that taxonomic diversity and the normalized abundance of oxidase-encoding genes explained as much variation in CO2 production as present-day gradients of pH and organic matter quantity and quality. Functional gene diversity was not linked to CO2 production rates. Surprisingly, the effects of taxonomic diversity and normalized oxidase abundance in the model predicting CO2 production were attributable to site-level differences in bacterial communities unrelated to the present-day environment, suggesting that colonization history rather than habitat-based filtering indirectly influenced ecosystem functioning. Our findings add to limited evidence that biodiversity and gene abundance explain patterns of microbiome functioning in nature. Yet we highlight among the first time how these relationships depend directly on present-day environmental conditions and indirectly on historical legacies, and so need to be contextualized with these other ecosystem properties.


Subject(s)
Bacteria/classification , Biodiversity , Ecosystem , Environmental Microbiology , Bacteria/genetics , Bacteria/metabolism , Carbon Dioxide/metabolism , Genetic Variation , Lakes/microbiology , Microbiota , Models, Biological
9.
Front Microbiol ; 9: 2662, 2018.
Article in English | MEDLINE | ID: mdl-30459741

ABSTRACT

The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails (Typha latifolia) and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi Phlebia spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH4 production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters.

10.
FEMS Microbiol Ecol ; 93(7)2017 07 01.
Article in English | MEDLINE | ID: mdl-28645188

ABSTRACT

Microbial communities are increasingly being recognized as important to host health in wild mammals, but how these communities are characterized can have important consequences on the results of these studies. Previous research has explored temporal variation in microbial communities in humans and lab mammals, but few have investigated how microbiomes fluctuate in wild populations and none have examined the temporal dynamics of these fluctuations in different body regions on a wild mammal. Using Illumina MiSeq sequencing of the V3-V4 16S rRNA gene regions, we characterized the buccal and gut microbiomes of wild North American red squirrels, Tamiasciurus hudsonicus, to measure changes in these two microbiomes over short (<2 weeks), medium (2-4 weeks) and long (>1 month) term sampling periods. While we observed short and medium temporal stability in the buccal microbiome, the gut microbiome varied between medium and long-term sampling periods. There was no evidence of intra-individual correlations between buccal and gut microbiome change, suggesting that temporal stability is dependent on the body region and factors affecting microbial stability may be specific to body sites. From these findings, we urge researchers to be cautious in interpreting results from single temporal sampling periods when quantifying characteristic microbiomes in wild mammals.


Subject(s)
Animals, Wild/microbiology , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Mouth Mucosa/microbiology , Sciuridae/microbiology , Animals , Feces/microbiology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , RNA, Ribosomal, 16S/genetics
11.
Can J Microbiol ; 63(2): 137-152, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28071137

ABSTRACT

Environmental oxidation and microbial metabolism drive production of acid mine drainage (AMD). Understanding changes in the microbial community, due to geochemical and seasonal characteristics, is fundamental to AMD monitoring and remediation. Using direct sequencing of the 16S and 18S rRNA genes to identify bacterial, archaeal, and eukaryotic members of the microbial community at an AMD site in Northern Ontario, Canada, we found a dynamic community varying significantly across winter and summer sampling times. Community composition was correlated with physical and chemical properties, including water temperature, pH, conductivity, winter ice thickness, and metal concentrations. Within Bacteria, Acidithiobacillus was the dominant genus during winter (11%-57% of sequences) but Acidiphilium was dominant during summer (47%-87%). Within Eukarya, Chrysophyceae (1.5%-94%) and Microbotrymycetes (8%-92%) dominated the winter community, and LKM11 (4%-62%) and Chrysophyceae (25%-87%) the summer. There was less diversity and variability within the Archaea, with similar summer and winter communities mainly comprising Thermoplasmata (33%-64%) and Thermoprotei (5%-20%) classes but also including a large portion of unclassified reads (∼40%). Overall, the active AMD community varied significantly between winter and summer, with changing community profiles closely correlated to specific differences in AMD geochemical and physical properties, including pH, water temperature, ice thickness, and sulfate and metal concentrations.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Mining , Eukaryota/isolation & purification , Hydrogen-Ion Concentration , Seasons
12.
Biol Lett ; 12(1): 20150875, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26740566

ABSTRACT

Bacterial diversity within animals is emerging as an essential component of health, but it is unknown how stress may influence the microbiome. We quantify a proximate link between the oral microbiome and hypothalamic-pituitary-adrenal (HPA) axis activity using faecal glucocorticoid metabolites (FGM) in wild red squirrels (Tamiasciurus hudsonicus). Not only was bacterial diversity lower at higher levels of FGM, but also between capture periods a change in bacterial relative abundance was related to an increase in FGM. These linkages between the HPA axis and microbiome communities represent a powerful capacity for stress to have multi-dimensional effects on health.


Subject(s)
Glucocorticoids/analysis , Microbiota , Sciuridae/microbiology , Sciuridae/physiology , Stress, Physiological , Animals , Feces/chemistry , Female , Hypothalamo-Hypophyseal System/physiology , Male , Mouth/microbiology , Pituitary-Adrenal System/physiology
13.
Appl Environ Microbiol ; 79(12): 3637-48, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23563939

ABSTRACT

The Lost Hammer (LH) Spring is the coldest and saltiest terrestrial spring discovered to date and is characterized by perennial discharges at subzero temperatures (-5°C), hypersalinity (salinity, 24%), and reducing (≈-165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0%, wt/wt), dissolved H2S/sulfides (up to 25 ppm), ammonia (≈381 µM), and methane (11.1 g day(-1)). To determine its total functional and genetic potential and to identify its active microbial components, we performed metagenomic analyses of the LH Spring outlet microbial community and pyrosequencing analyses of the cDNA of its 16S rRNA genes. Reads related to Cyanobacteria (19.7%), Bacteroidetes (13.3%), and Proteobacteria (6.6%) represented the dominant phyla identified among the classified sequences. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic data set. In the cDNA profile of the LH Spring active community, ammonia oxidizers (Thaumarchaeota), denitrifiers (Pseudomonas spp.), sulfate reducers (Desulfobulbus spp.), and other sulfur oxidizers (Thermoprotei) were present, highlighting their involvement in nitrogen and sulfur cycling. Stress response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. Comparison of the composition of the functional community of the LH Spring to metagenomes from other saline/subzero environments revealed a close association between the LH Spring and another Canadian high-Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. Overall, this study provides insights into the metabolic potential and the active microbial populations that exist in this hypersaline cryoenvironment and contributes to our understanding of microbial ecology in extreme environments.


Subject(s)
Cold Temperature , Geologic Sediments/microbiology , Metagenome/genetics , Natural Springs/microbiology , Salinity , Archaea/genetics , Arctic Regions , Bacteroidetes/genetics , Base Sequence , Cyanobacteria/genetics , DNA Primers/genetics , DNA, Complementary/genetics , Molecular Sequence Data , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
J Microbiol Methods ; 93(2): 108-15, 2013 May.
Article in English | MEDLINE | ID: mdl-23485423

ABSTRACT

We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment.


Subject(s)
Bacteria/classification , Bacteriological Techniques/methods , Biota , Environmental Microbiology , Industrial Microbiology , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
ISME J ; 7(6): 1211-26, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23389107

ABSTRACT

Planococcus halocryophilus strain Or1, isolated from high Arctic permafrost, grows and divides at -15 °C, the lowest temperature demonstrated to date, and is metabolically active at -25 °C in frozen permafrost microcosms. To understand how P. halocryophilus Or1 remains active under the subzero and osmotically dynamic conditions that characterize its native permafrost habitat, we investigated the genome, cell physiology and transcriptomes of growth at -15 °C and 18% NaCl compared with optimal (25 °C) temperatures. Subzero growth coincides with unusual cell envelope features of encrustations surrounding cells, while the cytoplasmic membrane is significantly remodeled favouring a higher ratio of saturated to branched fatty acids. Analyses of the 3.4 Mbp genome revealed that a suite of cold and osmotic-specific adaptive mechanisms are present as well as an amino acid distribution favouring increased flexibility of proteins. Genomic redundancy within 17% of the genome could enable P. halocryophilus Or1 to exploit isozyme exchange to maintain growth under stress, including multiple copies of osmolyte uptake genes (Opu and Pro genes). Isozyme exchange was observed between the transcriptome data sets, with selective upregulation of multi-copy genes involved in cell division, fatty acid synthesis, solute binding, oxidative stress response and transcriptional regulation. The combination of protein flexibility, resource efficiency, genomic plasticity and synergistic adaptation likely compensate against osmotic and cold stresses. These results suggest that non-spore forming P. halocryophilus Or1 is specifically suited for active growth in its Arctic permafrost habitat (ambient temp. ∼-16 °C), indicating that such cryoenvironments harbor a more active microbial ecosystem than previously thought.


Subject(s)
Planococcus Bacteria/physiology , Acclimatization , Arctic Regions , Cell Membrane/chemistry , Cold Temperature , Ecosystem , Freezing , Gene Expression Regulation, Bacterial , Genome, Bacterial , Molecular Sequence Data , Osmotic Pressure , Planococcus Bacteria/cytology , Planococcus Bacteria/growth & development
16.
Astrobiology ; 12(4): 347-60, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22519974

ABSTRACT

The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .


Subject(s)
Biodiversity , Biota , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Arctic Regions , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Ice , Pseudomonas/genetics , Pseudomonas/metabolism , RNA, Ribosomal, 16S/genetics , Temperature
17.
Extremophiles ; 16(2): 177-91, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22246205

ABSTRACT

Lost Hammer (LH) spring is a unique hypersaline, subzero, perennial high Arctic spring arising through thick permafrost. In the present study, the microbial and geochemical characteristics of the LH outflow channels, which remain unfrozen at ≥-18°C and are more aerobic/less reducing than the spring source were examined and compared to the previously characterized spring source environment. LH channel sediments contained greater microbial biomass (~100-fold) and greater microbial diversity reflected by the 16S rRNA clone libraries. Phylotypes related to methanogenesis, methanotrophy, sulfur reduction and oxidation were detected in the bacterial clone libraries while the archaeal community was dominated by phylotypes most closely related to THE ammonia-oxidizing Thaumarchaeota. The cumulative percent recovery of (14)C-acetate mineralization in channel sediment microcosms exceeded ~30% and ~10% at 5 and -5°C, respectively, but sharply decreased at -10°C (≤1%). Most bacterial isolates (Marinobacter, Planococcus, and Nesterenkonia spp.) were psychrotrophic, halotolerant, and capable of growth at -5°C. Overall, the hypersaline, subzero LH spring channel has higher microbial diversity and activity than the source, and supports a variety of niches reflecting the more dynamic and heterogeneous channel environment.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Seawater/chemistry , Arctic Regions , Biodiversity , Carbon Dioxide/chemistry , Chemistry/methods , Cold Temperature , DNA, Archaeal/metabolism , DNA, Bacterial/metabolism , Freezing , Geology/methods , Methane/chemistry , Phylogeny , RNA, Ribosomal, 16S/metabolism
18.
Int J Syst Evol Microbiol ; 62(Pt 8): 1937-1944, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22003043

ABSTRACT

A novel aerobic, Gram-positive, motile, coccoid bacterial strain, designated Or1(T), was isolated from permafrost active-layer soil collected from the Canadian high Arctic. Strain Or1(T) was capable of growth over a broad temperature range, including sub-zero growth (below -10 to 37 °C), and at high salinity (0-19% NaCl), growing optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2% NaCl. Its taxonomic and phylogenetic position was determined by using a polyphasic approach, which indicated that strain Or1(T) was a member of the genus Planococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Or1(T) belonged to the genus Planococcus, differing by 0.4-3.6% from the type strains of all recognized Planococcus species, and was related most closely to Planococcus antarcticus CMS 26or(T) (98.8% similarity) and Planococcus donghaensis JH1(T) (99.6%). However, DNA-DNA hybridization experiments showed that strain Or1(T) had low genomic relatedness to Planococcus antarcticus CMS 26or(T) (18%) and Planococcus donghaensis JH1(T) (46%). The major menaquinones of strain Or1(T) were MK-7 (55%), MK-8 (36%) and MK-6 (9%) and the major fatty acids were anteiso-C(15:0), C(16:1)ω7c alcohol and anteiso-C(17:0). The DNA G+C content of strain Or1(T) was 40.5 mol%. Differential phenotypic, phylogenetic and genomic data suggest that strain Or1(T) represents a novel species of the genus Planococcus, for which the name Planococcus halocryophilus sp. nov. is proposed. The type strain is Or1(T) ( = DSM 24743(T) = JCM 17719(T)).


Subject(s)
Gram-Positive Bacteria/classification , Phylogeny , Soil Microbiology , Arctic Regions , Bacterial Typing Techniques , Base Composition , Canada , DNA, Bacterial/genetics , Fatty Acids/analysis , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/isolation & purification , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/analysis , Vitamin K 2/analysis
19.
Antonie Van Leeuwenhoek ; 100(2): 259-77, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21604047

ABSTRACT

Cold tolerant strains of Acidithiobacillus ferrooxidans play a role in metal leaching and acid mine drainage (AMD) production in northern latitude/boreal mining environments. In this study we used a proteomics and bioinformatics approach to decipher the proteome changes related to sustained growth at low temperatures to increase our understanding of cold adaptation mechanisms in A. ferrooxidans strains. Changes in protein abundance in response to low temperatures (5 and 15°C) were monitored and protein analyses of a psychrotrophic strain (D6) versus a mesophilic strain (F1) showed that both strains increased levels of 11 stress-related and metabolic proteins including survival protein SurA, trigger factor Tig, and AhpC-Tsa antioxidant proteins. However, a unique set of changes in the proteome of psychrotrophic strain D6 were observed. In particular, the importance of protein fate, membrane transport and structure for psychrotrophic growth were evident with increases in numerous chaperone and transport proteins including GroEL, SecB, ABC transporters and a capsule polysaccharide export protein. We also observed that low temperature iron oxidation coincides with a relative increase in the key iron metabolism protein rusticyanin, which was more highly expressed in strain D6 than in strain F1 at colder growth temperatures. We demonstrate that the psychrotrophic strain uses a global stress response and cold-active metabolism which permit growth of A. ferrooxidans in the extreme AMD environment in colder climates.


Subject(s)
Acidithiobacillus/physiology , Adaptation, Physiological , Bacterial Proteins/metabolism , Cold Temperature , Proteome/metabolism , Acidithiobacillus/genetics , Acidithiobacillus/growth & development , Azurin/metabolism , Carbon/metabolism , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Iron/metabolism , Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Oxidation-Reduction , Oxidative Stress , Phylogeny , Protein Folding , Protein Isoforms/metabolism
20.
Arch Microbiol ; 192(12): 1005-18, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20852847

ABSTRACT

Psychrotrophic strains of Acidithiobacillus ferrooxidans have an important role in metal leaching and acid mine drainage (AMD) production in colder mining environments. We investigated cytoplasmic membrane fluidity and fatty acid alterations in response to low temperatures (5 and 15°C). Significant differences in membrane fluidity, measured by polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), were found where the psychrotrophic strains had a significantly more rigid membrane (P range = 0.41-0.45) and lower transition temperature midpoints (T (m) = 2.0°C) and broader transition range than the mesophilic strains (P range = 0.38-0.39; T (m) = 2.0-18°C) at cold temperatures. Membrane remodeling was evident in all strains with a common trend of increased unsaturated fatty acid component in response to lower growth temperatures. In psychrotrophic strains, decreases in 12:0 fatty acids distinguished the 5°C fatty acid profiles from those of the mesophilic strains that showed decreases in 16:0, 17:0, and cyclo-19:0 fatty acids. These changes were also correlated with the observed changes in membrane fluidity (R (2) = 63-97%). Psychrotrophic strains employ distinctive modulation of cytoplasmic membrane fluidity with uncommon membrane phase changes as part of their adaptation to the extreme AMD environment in colder climates.


Subject(s)
Acidithiobacillus/metabolism , Adaptation, Physiological , Cold Temperature , Fatty Acids/analysis , Membrane Fluidity , Acidithiobacillus/growth & development , Cell Membrane/chemistry , Diphenylhexatriene
SELECTION OF CITATIONS
SEARCH DETAIL
...