Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Genet Med ; 26(7): 101144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641994

ABSTRACT

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.


Subject(s)
Gangliosidosis, GM1 , Magnetic Resonance Imaging , Humans , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Female , Male , Prospective Studies , Child, Preschool , Child , Infant , Adolescent , Phenotype , Brain/diagnostic imaging , Brain/pathology , Mutation , Disease Progression , Adult , beta-Galactosidase
2.
medRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38313286

ABSTRACT

Purpose: GM1 gangliosidosis (GM1) is an ultra-rare lysosomal storage disease caused by pathogenic variants in galactosidase beta 1 (GLB1; NM_000404), primarily characterized by neurodegeneration, often in children. There are no approved treatments for GM1, but clinical trials using gene therapy (NCT03952637, NCT04713475) and small molecule substrate inhibitors (NCT04221451) are ongoing. Understanding the natural history of GM1 is essential for timely diagnosis, facilitating better supportive care, and contextualizing the results of therapeutic trials. Methods: Forty-one individuals with type II GM1 (n=17 late infantile and n=24 juvenile onset) participated in a single-site prospective observational study. Here, we describe the results of extensive multisystem assessment batteries, including clinical labs, neuroimaging, physiological exams, and behavioral assessments. Results: Classification of 37 distinct variants in this cohort was performed according to ACMG criteria and resulted in the upgrade of six and the submission of four new variants to pathogenic or likely pathogenic. In contrast to type I infantile, children with type II disease exhibited normal or near normal hearing and did not have cherry red maculae or significant hepatosplenomegaly. Some older children with juvenile onset developed thickened aortic and/or mitral valves with regurgitation. Serial MRIs demonstrated progressive brain atrophy that were more pronounced in those with late infantile onset. MR spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale and progress more rapidly in late infantile than juvenile onset disease. Conclusion: The comprehensive serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies some common misconceptions about type II patients. Findings from this 10-year endeavor are a pivotal step toward more timely diagnosis and better supportive care for patients. The wealth of data amassed through this effort will serve as a robust comparator for ongoing and future therapeutic trials.

3.
Pediatr Res ; 91(6): 1562-1570, 2022 05.
Article in English | MEDLINE | ID: mdl-34040161

ABSTRACT

BACKGROUND: After adoption, children exposed to institutionalized care show significant improvement, but incomplete recovery of growth and developmental milestones. There is a paucity of data regarding risk and protective factors in children adopted from institutionalized care. This prospective study followed children recently adopted from institutionalized care to investigate the relationship between family environment, executive function, and behavioral outcomes. METHODS: Anthropometric measurements, physical examination, endocrine and bone age evaluations, neurocognitive testing, and behavioral questionnaires were evaluated over a 2-year period with children adopted from institutionalized care and non-adopted controls. RESULTS: Adopted children had significant deficits in growth, cognitive, and developmental measurements compared to controls that improved; however, residual deficits remained. Family cohesiveness and expressiveness were protective influences, associated with less behavioral problems, while family conflict and greater emphasis on rules were associated with greater risk for executive dysfunction. CONCLUSIONS: Our data suggest that a cohesive and expressive family environment moderated the effect of pre-adoption adversity on cognitive and behavioral development in toddlers, while family conflict and greater emphasis on rules were associated with greater risk for executive dysfunction. Early assessment of child temperament and parenting context may serve to optimize the fit between parenting style, family environment, and the child's development. IMPACT: Children who experience institutionalized care are at increased risk for significant deficits in developmental, cognitive, and social functioning associated with a disruption in the development of the prefrontal cortex. Aspects of the family caregiving environment moderate the effect of early life social deprivation in children. Family cohesiveness and expressiveness were protective influences, while family conflict and greater emphasis on rules were associated with a greater risk for executive dysfunction problems. This study should be viewed as preliminary data to be referenced by larger studies investigating developmental and behavioral outcomes of children adopted from institutional care.


Subject(s)
Child, Adopted , Cognitive Dysfunction , Executive Function , Humans , Parenting/psychology , Prospective Studies
4.
Genet Med ; 23(8): 1534-1542, 2021 08.
Article in English | MEDLINE | ID: mdl-34007002

ABSTRACT

PURPOSE: To conduct a proof-of-principle study to identify subtypes of propionic acidemia (PA) and associated biomarkers. METHODS: Data from a clinically diverse PA patient population ( https://clinicaltrials.gov/ct2/show/NCT02890342 ) were used to train and test machine learning models, identify PA-relevant biomarkers, and perform validation analysis using data from liver-transplanted participants. k-Means clustering was used to test for the existence of PA subtypes. Expert knowledge was used to define PA subtypes (mild and severe). Given expert classification, supervised machine learning (support vector machine with a polynomial kernel, svmPoly) performed dimensional reduction to define relevant features of each PA subtype. RESULTS: Forty participants enrolled in the study; five underwent liver transplant. Analysis with k-means clustering indicated that several PA subtypes may exist on the biochemical continuum. The conventional PA biomarkers, plasma total 2-methylctirate and propionylcarnitine, were not statistically significantly different between nontransplanted and transplanted participants motivating us to search for other biomarkers. Unbiased dimensional reduction using svmPoly revealed that plasma transthyretin, alanine:serine ratio, GDF15, FGF21, and in vivo 1-13C-propionate oxidation, play roles in defining PA subtypes. CONCLUSION: Support vector machine prioritized biomarkers that helped classify propionic acidemia patients according to severity subtypes, with important ramifications for future clinical trials and management of PA.


Subject(s)
Liver Transplantation , Propionic Acidemia , Biomarkers , Humans , Laboratories , Propionic Acidemia/diagnosis , Propionic Acidemia/genetics
5.
Genet Med ; 21(12): 2830-2835, 2019 12.
Article in English | MEDLINE | ID: mdl-31249402

ABSTRACT

PURPOSE: Propionic acidemia (PA) is a severe metabolic disorder characterized by multiorgan pathology, including renal disease. The prevalence of chronic kidney disease (CKD) in PA patients and factors associated with CKD in PA are not known. METHODS: Thirty-one subjects diagnosed with PA underwent laboratory and clinical evaluations through a dedicated natural history study at the National Institutes of Health (ClinicalTrials.gov identifier: NCT02890342). RESULTS: Cross-sectional analysis of the creatinine-based estimated glomerular filtration rate (eGFR) in subjects with native kidneys revealed an age-dependent decline in renal function (P < 0.002). Among adults with PA, 4/8 (50%) had eGFR <60 mL/min/1.73 m2. There was a significant discrepancy between eGFRs calculated using estimating equations based on serum creatinine compared with serum cystatin C (P < 0.0001). The tubular injury marker, plasma lipocalin-2, and plasma uric acid were strongly associated with CKD (P < 0.0001). The measured 24-hour creatinine excretion was below normal, even after adjusting for age, height, and sex. CONCLUSION: CKD is common in adults with PA and is associated with age. The poor predictive performance of standard eGFR estimating equations, likely due to reduced creatine synthesis in kidney and liver, could delay the recognition of CKD and management of ensuing complications in this population.


Subject(s)
Propionic Acidemia/complications , Renal Insufficiency, Chronic/epidemiology , Adolescent , Adult , Biomarkers , Child , Child, Preschool , Creatinine/blood , Cross-Sectional Studies , Cystatin C/analysis , Cystatin C/blood , Female , Glomerular Filtration Rate , Humans , Kidney , Lipocalin-2/analysis , Lipocalin-2/blood , Male , Middle Aged , Prevalence , Propionic Acidemia/epidemiology , Uric Acid/analysis , Uric Acid/blood
6.
Curr Opin Clin Nutr Metab Care ; 21(1): 42-48, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29035969

ABSTRACT

PURPOSE OF REVIEW: The current review highlights the varied effects of medical foods high in leucine (Leu) and devoid of valine (Val) and isoleucine (Ile) in the management of methylmalonic acidemia (MMA) and propionic acidemia and cobalamin C (cblC) deficiency, aiming to advance dietary practices. RECENT FINDINGS: Leu is a key metabolic regulator with a multitude of effects on different organ systems. Recent observational studies have demonstrated that these effects can have unintended consequences in patients with MMA as a result of liberal use of medical foods. The combination of protein restriction and medical food use in MMA and propionic acidemia results in an imbalanced branched-chain amino acid (BCAA) dietary content with a high Leu-to-Val and/or Ile ratio. This leads to decreased plasma levels of Val and Ile and predicts impaired brain uptake of multiple essential amino acids. Decreased transport of methionine (Met) across the blood-brain barrier due to high circulating Leu levels is of particular concern in cblC deficiency in which endogenous Met synthesis is impaired. SUMMARY: Investigations into the optimal composition of medical foods for MMA and propionic acidemia, and potential scenarios in which Leu supplementation may be beneficial are needed. Until then, MMA/propionic acidemia medical foods should be used judiciously in the dietary management of these patients and avoided altogether in cblC deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Diet, Protein-Restricted , Foods, Specialized , Leucine/therapeutic use , Propionic Acidemia/diet therapy , Amino Acid Metabolism, Inborn Errors/blood , Animals , Deficiency Diseases/blood , Deficiency Diseases/etiology , Deficiency Diseases/prevention & control , Diet, Protein-Restricted/adverse effects , Foods, Specialized/adverse effects , Homocystinuria/blood , Homocystinuria/diet therapy , Humans , Isoleucine/blood , Isoleucine/deficiency , Leucine/adverse effects , Propionic Acidemia/blood , Valine/blood , Valine/deficiency , Vitamin B 12 Deficiency/blood , Vitamin B 12 Deficiency/congenital , Vitamin B 12 Deficiency/diet therapy
7.
8.
Genet Med ; 18(4): 386-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26270765

ABSTRACT

PURPOSE: Medical foods for methylmalonic acidemias (MMAs) and propionic acidemias contain minimal valine, isoleucine, methionine, and threonine but have been formulated with increased leucine. We aimed to assess the effects of imbalanced branched-chain amino acid intake on metabolic and growth parameters in a cohort of patients with MMA ascertained via a natural history study. METHODS: Cross-sectional anthropometric and body-composition measurements were correlated with diet content and disease-related biomarkers in 61 patients with isolated MMA (46 mut, 9 cblA, and 6 cblB). RESULTS: Patients with MMA tolerated close to the recommended daily allowance (RDA) of complete protein (mut(0): 99.45 ± 32.05% RDA). However, 85% received medical foods, in which the protein equivalent often exceeded complete protein intake (35%). Medical food consumption resulted in low plasma valine and isoleucine concentrations, prompting paradoxical supplementation with these propiogenic amino acids. Weight- and height-for-age z-scores correlated negatively with the leucine-to-valine intake ratio (r = -0.453; P = 0.014; R(2) = 0.209 and r = -0.341; P = 0.05; R(2) = 0.123, respectively). CONCLUSION: Increased leucine intake in patients with MMA resulted in iatrogenic amino acid deficiencies and was associated with adverse growth outcomes. Medical foods for propionate oxidation disorders need to be redesigned and studied prospectively to ensure efficacy and safety.Genet Med 18 4, 386-395.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Diet , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acids, Branched-Chain , Body Composition , Body Weights and Measures , Child , Child, Preschool , Cross-Sectional Studies , Diet/adverse effects , Dietary Proteins , Dietary Supplements , Disease Management , Female , Humans , Male , Treatment Outcome , Young Adult
9.
Genet Med ; 18(4): 396-404, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26270766

ABSTRACT

PURPOSE: Cobalamin C (cblC) deficiency impairs the biosynthesis of 5'-deoxyadenosyl-adenosyl- and methyl-cobalamin, resulting in methylmalonic acidemia combined with hyperhomocysteinemia and hypomethioninemia. However, some patients with cblC deficiency are treated with medical foods, devoid of methionine and high in leucine content, that are formulated for patients with isolated propionate oxidative defects. We examined the effects of imbalanced branched-chain amino acid intake on growth outcomes in cblC-deficient patients. METHODS: Dietary intake was correlated with biochemical, anthropometric, and body composition measurements and other disease parameters in a cohort of 28 patients with early-onset cblC deficiency. RESULTS: Protein-restricted diets were followed by 21% of the patients, whereas 32% received medical foods. Patients on protein-restricted diets had lower height-for-age z-score (P = 0.034), whereas patients consuming medical foods had lower head circumference Z-scores (P = 0.037), plasma methionine concentrations (P = 0.001), and predicted methionine influx through the blood-brain barrier Z-score (-1.29 vs. -0.0617; P = 0.007). The combination of age at diagnosis, a history of seizures, and the leucine-to-valine dietary intake ratio best predicted head circumference Z-score based on multiple regression modeling (R(2) = 0.945). CONCLUSIONS: Patients with cblC deficiency treated with medical foods designed for isolated methylmalonic acidemia are at risk for iatrogenic methionine deficiency that could adversely affect brain growth and development.Genet Med 18 4, 396-404.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Diet, Protein-Restricted , Vitamin B 12 Deficiency/diet therapy , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/etiology , Amino Acids, Branched-Chain/metabolism , Blood-Brain Barrier/metabolism , Body Composition , Body Weights and Measures , Brain/metabolism , Child , Child, Preschool , Diet, Protein-Restricted/adverse effects , Female , Humans , Male , Vitamin B 12 Deficiency/complications , Vitamin B 12 Deficiency/diagnosis , Vitamin B 12 Deficiency/metabolism , Young Adult
10.
J Dev Behav Pediatr ; 34(7): 449-59, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24042076

ABSTRACT

OBJECTIVE: Children with autism (AUT) may consume a restricted diet relative to typical peers, whether due to therapeutic measures or sensory sensitivities. The objective of this study was to compare children with AUT with both typically developing (TYP) and developmentally delayed children on nutrient and food group intake and overall diet quality and to evaluate the impact of diet restriction. METHODS: Three-day food records and interview information were analyzed from 69 children with AUT, 14 children with developmental delay, and 37 TYP children, drawn from a larger longitudinal study. RESULTS: Children with AUT did not differ significantly from children with other developmental delays on any dietary measures. Although there were differences in the average intake of some nutrients between AUT and typical controls, only calcium and dairy were also less likely to be consumed in adequate amounts by the AUT group. Intentional diet restriction accounted for most of the differences between AUT and typical controls. On average, all groups had inadequate fiber, vitamin D, and vegetable intake. Inadequate intake of folate, grains, and dairy was noted for the AUT subgroup with intentional diet restrictions. Children in the AUT group not following a restricted diet received significantly worse Healthy Eating Index-2005 scores than those following a restricted diet and typical controls. These differences were not nutritionally significant. CONCLUSIONS: When evaluating nutritional adequacy of children with AUT, special consideration should be given to calcium, folate, dairy, and grains. Diets of all children with AUT should be evaluated for idiosyncratic deficiencies because of unique dietary patterns.


Subject(s)
Autistic Disorder/diet therapy , Diet/statistics & numerical data , Autistic Disorder/psychology , Case-Control Studies , Caseins/administration & dosage , Child , Child, Preschool , Developmental Disabilities/psychology , Diet Surveys , Diet, Gluten-Free , Eating , Feeding Behavior , Female , Humans , Infant , Longitudinal Studies , Male , Soybean Proteins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...