Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 41(13): 4607-12, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17695904

ABSTRACT

The use of zero valent iron (Fe0) for the remediation of water contaminated with carbon disulfide (CS2), a common groundwater contaminant, has been evaluated in this study. Mineralogical analysis of Fe0 filings and polished Fe0 cross-sections indicates that iron sulfide is formed due to the removal of carbon disulfide from solution by Fe0. The kinetics of CS2 removal by Fe0 was examined through both batch and column testing, and it is demonstrated that CS2 is removed rapidly from solution. A linear relationship was observed, through batch testing, between the pseudo-first-order rate constant (k(obs)) and the surface area concentration of Fe0 (rho(a)). Data obtained from kinetic batch tests performed at four temperature levels conformed to the Arrhenius equation, and the calculated apparent activation energy (E(a)) was 37 +/- 2.3 kJ mol(-1), indicating that the kinetics of CS2 removal by Fe0 is controlled by a chemical surface reaction. The temperature correction factors for CS2 from a reference of 25 degrees C were x 1.4 for 18 degrees C, x 1.7 for 15 degrees C, x 2.0 for 12 degrees C, and x 2.3 for 9 degrees C. Surface area normalization of k(obs) obtained through batch and column testing gives specific reaction rate constants (k(SA)) within 1 order of magnitude, indicating that k(SA) values are useful as a general descriptor of CS2-Fe0 reaction kinetics and that these values provide a clear starting point for design calculations prior to commencing site-specific treatability studies for permeable reactive barrier design.


Subject(s)
Carbon Disulfide/isolation & purification , Iron/chemistry , Kinetics , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...