Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
PLoS One ; 17(3): e0250751, 2022.
Article in English | MEDLINE | ID: mdl-35320270

ABSTRACT

An understanding of the relationship between the cultivated apple (Malus domestica) and its primary wild progenitor species (M. sieversii) not only provides an understanding of how apples have been improved in the past, but may be useful for apple improvement in the future. We measured 10 phenotypes in over 1000 unique apple accessions belonging to M. domestica and M. sieversii from Canada's Apple Biodiversity Collection. Using principal components analysis (PCA), we determined that M. domestica and M. sieversii differ significantly in phenotypic space and are nearly completely distinguishable as two separate groups. We found that M. domestica had a shorter juvenile phase than M. sieversii and that cultivated trees produced flowers and ripe fruit later than their wild progenitors. Cultivated apples were also 3.6 times heavier, 43% less acidic, and had 68% less phenolic content than wild apples. Using historical records, we found that apple breeding over the past 200 years has resulted in a trend towards apples that have higher soluble solids, are less bitter, and soften less during storage. Our results quantify the significant changes in phenotype that have taken place since apple domestication, and provide evidence that apple breeding has led to continued phenotypic divergence of the cultivated apple from its wild progenitor species.


Subject(s)
Malus , Domestication , Fruit/genetics , Malus/genetics , Phenotype , Plant Breeding
3.
Nat Plants ; 7(10): 1330-1334, 2021 10.
Article in English | MEDLINE | ID: mdl-34650264

ABSTRACT

Analysis of over 100 Cannabis samples quantified for terpene and cannabinoid content and genotyped for over 100,000 single nucleotide polymorphisms indicated that Sativa- and Indica-labelled samples were genetically indistinct on a genome-wide scale. Instead, we found that Cannabis labelling was associated with variation in a small number of terpenes whose concentrations are controlled by genetic variation at tandem arrays of terpene synthase genes.


Subject(s)
Alkyl and Aryl Transferases/genetics , Cannabinoids/metabolism , Cannabis/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Terpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Cannabis/enzymology , Gas Chromatography-Mass Spectrometry , Genotype , Plant Proteins/metabolism
4.
Front Genet ; 12: 671300, 2021.
Article in English | MEDLINE | ID: mdl-34239539

ABSTRACT

Softening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of pre-harvest ripening and associated textural changes following harvest are key targets for improving fruit quality through breeding. Previously, we identified a large effect locus associated with harvest date and firmness in apple (Malus domestica) using genome-wide association studies (GWAS). Here, we present additional evidence that polymorphisms in or around a transcription factor gene, NAC18.1, may cause variation in these traits. First, we confirmed our previous findings with new phenotype and genotype data from ∼800 apple accessions. In this population, we compared a genetic marker within NAC18.1 to markers targeting three other firmness-related genes currently used by breeders (ACS1, ACO1, and PG1), and found that the NAC18.1 marker was the strongest predictor of both firmness at harvest and firmness after 3 months of cold storage. By sequencing NAC18.1 across 18 accessions, we revealed two predominant haplotypes containing the single nucleotide polymorphism (SNP) previously identified using GWAS, as well as dozens of additional SNPs and indels in both the coding and promoter sequences. NAC18.1 encodes a protein that is orthogolous to the NON-RIPENING (NOR) transcription factor, a regulator of ripening in tomato (Solanum lycopersicum). We introduced both NAC18.1 transgene haplotypes into the tomato nor mutant and showed that both haplotypes complement the nor ripening deficiency. Taken together, these results indicate that polymorphisms in NAC18.1 may underlie substantial variation in apple firmness through modulation of a conserved ripening program.

5.
Plant Direct ; 5(5): e00324, 2021 May.
Article in English | MEDLINE | ID: mdl-34095741

ABSTRACT

Grape growers use rootstocks to provide protection against pests and pathogens and to modulate viticulture performance such as shoot growth. Our study examined two grapevine scion varieties ('Chardonnay' and 'Cabernet Sauvignon') grafted to 15 different rootstocks and determined the effect of rootstocks on eight traits important to viticulture. We assessed the vines across five years and identified both year and variety as contributing strongly to trait variation. The effect of rootstock was relatively consistent across years and varieties, explaining between 8.99% and 9.78% of the variation in growth-related traits including yield, pruning weight, berry weight and Ravaz index (yield to pruning weight ratio). Increases in yield due to rootstock were generally the result of increases in berry weight, likely due to increased water uptake by vines grafted to a particular rootstock. We demonstrated a greater than 50% increase in yield, pruning weight, or Ravaz index by choosing the optimal rootstock, indicating that rootstock choice is crucial for grape growers looking to improve vine performance.

6.
Sci Rep ; 11(1): 2944, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536540

ABSTRACT

Aleutian disease (AD) is the most significant health issue for farmed American mink. The objective of this study was to identify the genomic regions subjected to selection for response to infection with Aleutian mink disease virus (AMDV) in American mink using genotyping by sequencing (GBS) data. A total of 225 black mink were inoculated with AMDV and genotyped using a GBS assay based on the sequencing of ApeKI-digested libraries. Five AD-characterized phenotypes were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (FST) and nucleotide diversity (θπ), that were validated by haplotype-based (hap-FLK) test. The total of 99 putatively selected regions harbouring 63 genes were detected in different groups. The gene ontology revealed numerous genes related to immune response (e.g. TRAF3IP2, WDR7, SWAP70, CBFB, and GPR65), liver development (e.g. SULF2, SRSF5) and reproduction process (e.g. FBXO5, CatSperß, CATSPER4, and IGF2R). The hapFLK test supported two strongly selected regions that contained five candidate genes related to immune response, virus-host interaction, reproduction and liver regeneration. This study provided the first map of putative selection signals of response to AMDV infection in American mink, bringing new insights into genomic regions controlling the AD phenotypes.


Subject(s)
Aleutian Mink Disease Virus/pathogenicity , Aleutian Mink Disease/genetics , Host Microbial Interactions/genetics , Mink/virology , Selection, Genetic , Aleutian Mink Disease/blood , Aleutian Mink Disease/immunology , Aleutian Mink Disease/virology , Aleutian Mink Disease Virus/genetics , Aleutian Mink Disease Virus/immunology , Aleutian Mink Disease Virus/isolation & purification , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , DNA, Viral/isolation & purification , Farms , Female , Host Microbial Interactions/immunology , Male , Mink/genetics , Phylogeny , Viral Load
7.
Hortic Res ; 8(1): 9, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33384408

ABSTRACT

The apple (Malus domestica) is one of the world's most commercially important perennial crops and its improvement has been the focus of human effort for thousands of years. Here, we genetically characterise over 1000 apple accessions from the United States Department of Agriculture (USDA) germplasm collection using over 30,000 single-nucleotide polymorphisms (SNPs). We confirm the close genetic relationship between modern apple cultivars and their primary progenitor species, Malus sieversii from Central Asia, and find that cider apples derive more of their ancestry from the European crabapple, Malus sylvestris, than do dessert apples. We determine that most of the USDA collection is a large complex pedigree: over half of the collection is interconnected by a series of first-degree relationships. In addition, 15% of the accessions have a first-degree relationship with one of the top 8 cultivars produced in the USA. With the exception of 'Honeycrisp', the top 8 cultivars are interconnected to each other via pedigree relationships. The cultivars 'Golden Delicious' and 'Red Delicious' were found to have over 60 first-degree relatives, consistent with their repeated use by apple breeders. We detected a signature of intense selection for red skin and provide evidence that breeders also selected for increased firmness. Our results suggest that Americans are eating apples largely from a single family tree and that the apple's future improvement will benefit from increased exploitation of its tremendous natural genetic diversity.

8.
Front Genet ; 11: 223, 2020.
Article in English | MEDLINE | ID: mdl-32231688

ABSTRACT

Knowledge of linkage disequilibrium (LD) patterns is necessary to determine the minimum density of markers required for genomic studies and to infer historical changes as well as inbreeding events in the populations. In this study, we used genotyping-by-sequencing (GBS) approach to detect single nucleotide polymorphisms (SNPs) across American mink genome and further to estimate LD, effective population size (Ne), and inbreeding rates based on excess of homozygosity (FHOM) and runs of homozygosity (ROH). A GBS assay was constructed based on the sequencing of ApeKI-digested libraries from 285 American mink using Illumina HiSeq Sequencer. Data of 13,321 SNPs located on 46 scaffolds was used to perform LD analysis. The average LD (r 2 ± SD) between adjacent SNPs was 0.30 ± 0.35 over all scaffolds with an average distance of 51 kb between markers. The average r 2 < 0.2 was observed at inter-marker distances of >40 kb, suggesting that at least 60,000 informative SNPs would be required for genomic selection in American mink. The Ne was estimated to be 116 at five generations ago. In addition, the most rapid decline of population size was observed between 100 and 200 generations ago. Our results showed that short extensions of homozygous genotypes (500 kb to 1 Mb) were abundant across the genome and accounted for 33% of all ROH identified. The average inbreeding coefficient based on ROH longer than 1 Mb was 0.132 ± 0.042. The estimations of FHOM ranged from -0.44 to 0.34 among different samples with an average of 0.15 over all individuals. This study provided useful insights to determine the density of SNP panel providing enough statistical power and accuracy in genomic studies of American mink. Moreover, these results confirmed that GBS approach can be considered as a useful tool for genomic studies in American mink.

9.
Hortic Res ; 6: 107, 2019.
Article in English | MEDLINE | ID: mdl-31645962

ABSTRACT

Apples are a nutritious food source with significant amounts of polyphenols that contribute to human health and wellbeing, primarily as dietary antioxidants. Although numerous pre- and post-harvest factors can affect the composition of polyphenols in apples, genetics is presumed to play a major role because polyphenol concentration varies dramatically among apple cultivars. Here we investigated the genetic architecture of apple polyphenols by combining high performance liquid chromatography (HPLC) data with ~100,000 single nucleotide polymorphisms (SNPs) from two diverse apple populations. We found that polyphenols can vary in concentration by up to two orders of magnitude across cultivars, and that this dramatic variation was often predictable using genetic markers and frequently controlled by a small number of large effect genetic loci. Using GWAS, we identified candidate genes for the production of quercitrin, epicatechin, catechin, chlorogenic acid, 4-O-caffeoylquinic acid and procyanidins B1, B2, and C1. Our observation that a relatively simple genetic architecture underlies the dramatic variation of key polyphenols in apples suggests that breeders may be able to improve the nutritional value of apples through marker-assisted breeding or gene editing.

10.
Plant Genome ; 12(2)2019 06.
Article in English | MEDLINE | ID: mdl-31290918

ABSTRACT

Understanding the genetic architecture of fruit quality traits is crucial to target breeding of apple ( L.) cultivars. We linked genotype and phenotype information by combining genotyping-by-sequencing (GBS) generated single nucleotide polymorphism (SNP) markers with fruit flavor volatile data, sugar and acid content, and historical trait data from a gene bank collection. Using gas chromatography-mass spectrometry (GC-MS) analysis of apple juice samples, we identified 49 fruit volatile organic compounds (VOCs). We found a very variable content of VOCs, especially for the esters, among 149 apple cultivars. We identified convincing associations for the acetate esters especially butyl acetate and hexyl acetate on chromosome 2 in a region of several alcohol acyl-transferases including AAT1. For sucrose content and for fructose and sucrose in percentage of total sugars, we revealed significant SNP associations. Here, we suggest a vacuolar invertase close to significant SNPs for this association as candidate gene. Harvest date was in strong SNP association with a NAC transcription factor gene and sequencing identified two haplotypes associated with harvest date. The study shows that SNP marker characterization of a gene bank collection can be successfully combined with new and historical trait data for association studies. Suggested candidate genes may contribute to an improved understanding of the genetic basis for important traits and simultaneously provide tools for targeted breeding using marker-assisted selection (MAS).


Subject(s)
Genome, Plant , Genome-Wide Association Study , Malus/chemistry , Malus/genetics , Acetates/analysis , Fruit/chemistry , Fruit/genetics , Fruit/growth & development , Malus/growth & development , Odorants , Polymorphism, Single Nucleotide , Sugars/analysis , Time , Volatile Organic Compounds
11.
Hortic Res ; 6: 59, 2019.
Article in English | MEDLINE | ID: mdl-30962944

ABSTRACT

In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.

12.
PLoS One ; 13(8): e0201889, 2018.
Article in English | MEDLINE | ID: mdl-30110387

ABSTRACT

In recent years, new genome-wide marker systems have provided highly informative alternatives to low density marker systems for evaluating plant populations. To date, most apple germplasm collections have been genotyped using low-density markers such as simple sequence repeats (SSRs), whereas only a few have been explored using high-density genome-wide marker information. We explored the genetic diversity of the Pometum gene bank collection (University of Copenhagen, Denmark) of 349 apple accessions using over 15,000 genome-wide single nucleotide polymorphisms (SNPs) and 15 SSR markers, in order to compare the strength of the two approaches for describing population structure. We found that 119 accessions shared a putative clonal relationship with at least one other accession in the collection, resulting in the identification of 272 (78%) unique accessions. Of these unique accessions, over half (52%) share a first-degree relationship with at least one other accession. There is therefore a high degree of clonal and family relatedness in the Danish apple gene bank. We find significant genetic differentiation between Malus domestica and its supposed primary wild ancestor, M. sieversii, as well as between accessions of Danish origin and all others. Using the GBS approach allowed us to estimate ploidy levels, which were in accordance with flow cytometry results. Overall, we found strong concordance between analyses based on the genome-wide SNPs and the 15 SSR loci. However, we argue that GBS is superior to traditional SSR approaches because it allows detection of a much more detailed population structure and can be further exploited in genome-wide association studies (GWAS). Finally, we compare GBS with SSR for the purpose of identifying clones and pedigree relations in a diverse apple gene bank and discuss the advantages and constraints of the two approaches.


Subject(s)
Genetic Variation , Malus/genetics , Microsatellite Repeats , Ploidies , Polymorphism, Single Nucleotide , Denmark , Evolution, Molecular , Genetic Markers , Genotyping Techniques/methods , Plant Breeding , Sequence Analysis, DNA/methods
13.
Front Plant Sci ; 9: 553, 2018.
Article in English | MEDLINE | ID: mdl-29922307

ABSTRACT

Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.

14.
Front Plant Sci ; 9: 343, 2018.
Article in English | MEDLINE | ID: mdl-29662497

ABSTRACT

Cacao (Theobroma cacao) is a globally important crop, and its yield is severely restricted by disease. Two of the most damaging diseases, witches' broom disease (WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi: Moniliophthora perniciosa and Moniliophthora roreri, respectively. Resistant cultivars are the most effective long-term strategy to address Moniliophthora diseases, but efficiently generating resistant and productive new cultivars will require robust methods for screening germplasm before field testing. Marker-assisted selection (MAS) and genomic selection (GS) provide two potential avenues for predicting the performance of new genotypes, potentially increasing the selection gain per unit time. To test the effectiveness of these two approaches, we performed a genome-wide association study (GWAS) and GS on three related populations of cacao in Ecuador genotyped with a 15K single nucleotide polymorphism (SNP) microarray for three measures of WBD infection (vegetative broom, cushion broom, and chirimoya pod), one of FPRD (monilia pod) and two productivity traits (total fresh weight of pods and % healthy pods produced). GWAS yielded several SNPs associated with disease resistance in each population, but none were significantly correlated with the same trait in other populations. Genomic selection, using one population as a training set to estimate the phenotypes of the remaining two (composed of different families), varied among traits, from a mean prediction accuracy of 0.46 (vegetative broom) to 0.15 (monilia pod), and varied between training populations. Simulations demonstrated that selecting seedlings using GWAS markers alone generates no improvement over selecting at random, but that GS improves the selection process significantly. Our results suggest that the GWAS markers discovered here are not sufficiently predictive across diverse germplasm to be useful for MAS, but that using all markers in a GS framework holds substantial promise in accelerating disease-resistance in cacao.

15.
Plant Genome ; 11(1)2018 03.
Article in English | MEDLINE | ID: mdl-29505632

ABSTRACT

The apple ( × Borkh.) is an economically and culturally important crop grown worldwide. Growers of this long-lived perennial must produce fruit of adequate quality while also combatting abiotic and biotic stress. Traditional apple breeding can take up to 20 yr from initial cross to commercial release, but genomics-assisted breeding can help accelerate this process. To advance genomics-assisted breeding in apple, we performed genome-wide association studies (GWAS) and genomic prediction in a collection of 172 apple accessions by linking over 55,000 single nucleotide polymorphisms (SNPs) with 10 phenotypes collected over 2 yr. Genome-wide association studies revealed several known loci for skin color, harvest date and firmness at harvest. Several significant GWAS associations were detected for resistance to a major fungal pathogen, apple scab ( [Cke.] Wint.), but we demonstrate that these hits likely represent a single ancestral source. Using genomic prediction, we show that most phenotypes are sufficiently predictable using genome-wide SNPs to be candidates for genomic selection. Finally, we detect a signal for firmness retention after storage on chromosome 10 and show that it may not stem from variation in , a gene repeatedly identified in bi-parental mapping studies and widely believed to underlie a major QTL for firmness on chromosome 10. We provide evidence that this major QTL is more likely due to variation in a neighboring ethylene response factor (ERF) gene. The present study showcases the superior mapping resolution of GWAS compared to bi-parental linkage mapping by identifying a novel candidate gene underlying a well-studied, major QTL involved in apple firmness.


Subject(s)
Disease Resistance/genetics , Malus/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Ascomycota/pathogenicity , Chromosome Mapping , Fruit/genetics , Genome-Wide Association Study , Malus/microbiology , Phenotype
16.
Hortic Res ; 4: 17035, 2017.
Article in English | MEDLINE | ID: mdl-28791127

ABSTRACT

Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world's largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic diversity in grapes.

17.
BMC Genomics ; 18(1): 523, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28693460

ABSTRACT

BACKGROUND: Genomic studies such as genome-wide association and genomic selection require genome-wide genotype data. All existing technologies used to create these data result in missing genotypes, which are often then inferred using genotype imputation software. However, existing imputation methods most often make use only of genotypes that are successfully inferred after having passed a certain read depth threshold. Because of this, any read information for genotypes that did not pass the threshold, and were thus set to missing, is ignored. Most genomic studies also choose read depth thresholds and quality filters without investigating their effects on the size and quality of the resulting genotype data. Moreover, almost all genotype imputation methods require ordered markers and are therefore of limited utility in non-model organisms. RESULTS: Here we introduce LinkImputeR, a software program that exploits the read count information that is normally ignored, and makes use of all available DNA sequence information for the purposes of genotype calling and imputation. It is specifically designed for non-model organisms since it requires neither ordered markers nor a reference panel of genotypes. Using next-generation DNA sequence (NGS) data from apple, cannabis and grape, we quantify the effect of varying read count and missingness thresholds on the quantity and quality of genotypes generated from LinkImputeR. We demonstrate that LinkImputeR can increase the number of genotype calls by more than an order of magnitude, can improve genotyping accuracy by several percent and can thus improve the power of downstream analyses. Moreover, we show that the effects of quality and read depth filters can differ substantially between data sets and should therefore be investigated on a per-study basis. CONCLUSIONS: By exploiting DNA sequence data that is normally ignored during genotype calling and imputation, LinkImputeR can significantly improve both the quantity and quality of genotype data generated from NGS technologies. It enables the user to quickly and easily examine the effects of varying thresholds and filters on the number and quality of the resulting genotype calls. In this manner, users can decide on thresholds that are most suitable for their purposes. We show that LinkImputeR can significantly augment the value and utility of NGS data sets, especially in non-model organisms with poor genomic resources.


Subject(s)
Genomics/methods , Genotyping Techniques/methods , Genome-Wide Association Study , Sequence Analysis, DNA , Software
18.
Front Plant Sci ; 8: 460, 2017.
Article in English | MEDLINE | ID: mdl-28421095

ABSTRACT

Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops.

19.
Front Plant Sci ; 8: 2185, 2017.
Article in English | MEDLINE | ID: mdl-29354142

ABSTRACT

Apple (Malus spp.) is a widely grown and valuable fruit crop. Leaf shape is important for flowering in apple and may also be an early indicator for other agriculturally valuable traits. We examined 9,000 leaves from 869 unique apple accessions using linear measurements and comprehensive morphometric techniques. We identified allometric variation as the result of differing length-to-width aspect ratios between accessions and species of apple. The allometric variation was due to variation in the width of the leaf blade, not the length. Aspect ratio was highly correlated with the first principal component (PC1) of morphometric variation quantified using elliptical Fourier descriptors (EFDs) and persistent homology (PH). While the primary source of variation was aspect ratio, subsequent PCs corresponded to complex shape variation not captured by linear measurements. After linking the morphometric information with over 122,000 genome-wide single nucleotide polymorphisms (SNPs), we found high SNP heritability values even at later PCs, indicating that comprehensive morphometrics can capture complex, heritable phenotypes. Thus, techniques such as EFDs and PH are capturing heritable biological variation that would be missed using linear measurements alone.

20.
Plant Genome ; 9(2)2016 07.
Article in English | MEDLINE | ID: mdl-27898813

ABSTRACT

Apple ( X Borkh.) is one of the world's most valuable fruit crops. Its large size and long juvenile phase make it a particularly promising candidate for marker-assisted selection (MAS). However, advances in MAS in apple have been limited by a lack of phenotype and genotype data from sufficiently large samples. To establish genotype-phenotype relationships and advance MAS in apple, we extracted over 24,000 phenotype scores from the USDA-Germplasm Resources Information Network (GRIN) database and linked them with over 8000 single nucleotide polymorphisms (SNPs) from 689 apple accessions from the USDA apple germplasm collection clonally preserved in Geneva, NY. We find significant genetic differentiation between Old World and New World cultivars and demonstrate that the genetic structure of the domesticated apple also reflects the time required for ripening. A genome-wide association study (GWAS) of 36 phenotypes confirms the association between fruit color and the MYB1 locus, and we also report a novel association between the transcription factor, NAC18.1, and harvest date and fruit firmness. We demonstrate that harvest time and fruit size can be predicted with relatively high accuracies ( > 0.46) using genomic prediction. Rapid decay of linkage disequilibrium (LD) in apples means millions of SNPs may be required for well-powered GWAS. However, rapid LD decay also promises to enable extremely high resolution mapping of causal variants, which holds great potential for advancing MAS.


Subject(s)
Genome, Plant/genetics , Malus/genetics , Chromosome Mapping , Fruit/genetics , Genome-Wide Association Study , Genotype , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...