Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37444590

ABSTRACT

Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.

2.
J Thromb Haemost ; 20(5): 1256-1270, 2022 05.
Article in English | MEDLINE | ID: mdl-35108449

ABSTRACT

BACKGROUND: Osteopontin (OPN) is a multifunctional proinflammatory matricellular protein overexpressed in multiple human cancers and associated with tumor progression and metastases. Thrombin cleavage of OPN reveals a cryptic binding site for α4 ß1 and α9 ß1 integrins. METHODS: Thrombin cleavage-resistant OPNR153A knock-in (OPN-KI) mice were generated and compared to OPN deficient mice (OPN-KO) and wild type (WT) mice in their ability to support growth of melanoma cells. Flow cytometry was used to analyze tumor infiltrating leukocytes. RESULTS: OPN-KI mice engineered with a thrombin cleavage-resistant OPN had reduced B16 melanoma growth and fewer pulmonary metastases than WT mice. The tumor suppression phenotype of the OPN-KI mouse was identical to that observed in OPN-KO mice and was replicated in WT mice by pharmacologic inhibition of thrombin with dabigatran. Tumors isolated from OPN-KI mice had increased tumor-associated macrophages with an altered activation phenotype. Immunodeficient OPN-KI mice (NOG-OPN-KI) or macrophage-depleted OPN-KI mice did not exhibit the tumor suppression phenotype. As B16 cells do not express OPN, thrombin-cleaved fragments of host OPN suppress host antitumor immune response by functionally modulating the tumor-associated macrophages. YUMM3.1 cells, which express OPN, showed less tumor suppression in the OPN-KI and OPN-KO mice than B16 cells, but its growth was suppressed by dabigatran similar to B16 cells. CONCLUSIONS: Thrombin cleavage of OPN, derived from the host and the tumor, initiates OPN's tumor-promoting activity in vivo.


Subject(s)
Melanoma, Experimental , Thrombin , Animals , Cell Adhesion/genetics , Dabigatran , Humans , Mice , Osteopontin/chemistry , Osteopontin/genetics , Thrombin/metabolism
3.
AAPS J ; 19(4): 1186-1195, 2017 07.
Article in English | MEDLINE | ID: mdl-28516358

ABSTRACT

BAY 1093884 is a fully human monoclonal antibody against the tissue factor pathway inhibitor (TFPI) in development as prophylaxis in patients with hemophilia with or without inhibitors. In vitro, BAY 1093884 binds to human, mouse, and monkey TFPI. The objective of this study was to find a pharmacodynamic (PD) biomarker after administration of BAY 1093884 to normal monkeys. In monkey plasma, BAY 1093884 exhibited an IC50 (concentration that inhibits 50%) of 4.65 and 6.19 nM for free TFPI and diluted prothrombin time (dPT), respectively. The BAY 1093884 pharmacokinetic (PK) profile and its PD effects on dPT and free TFPI levels were assessed after intravenous and subcutaneous administration of BAY 1093884 (5 and 20 mg/kg) to female cynomolgus monkeys. Free TFPI concentrations in plasma decreased rapidly and increased to baseline in a dose-dependent manner. dPT clotting time was shortened and correlated with free TFPI levels and drug concentration in plasma, demonstrating the relationship between PD activities (dPT clotting time and free TFPI levels) and drug concentration. BAY 1093884 exhibited nonlinear PK, and a target-mediated drug disposition model was used to characterize the BAY 1093884 versus TFPI concentration-response relationship. We concluded that a mechanism-based PK/PD binding model could be useful for predicting human response to BAY 1093884. For the first-in-human study, measurement of free TFPI will be included as part of the dose-escalation design.


Subject(s)
Antibodies, Neutralizing/pharmacology , Lipoproteins/immunology , Animals , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , Female , Macaca fascicularis
4.
J Insect Sci ; 14: 172, 2014.
Article in English | MEDLINE | ID: mdl-25368085

ABSTRACT

The dispersal flights of West Indian drywood termite, Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae) were surveyed in the major cities of Azores. The sampling device used to estimate termite density consisted of a yellow adhesive trap (size 45 by 24 cm), placed with an artificial or natural light source in a dark attic environment. In addition, data from two other projects were used to improve the knowledge about the geographical distribution of the species. The level of infestation in the two main Azorean towns differed, with high levels in the houses of Angra do Heroísmo, whereas in Ponta Delgada, there are fewer houses with high levels of infestation. The infestation in Ponta Delgada shows a pattern of spreading from the center outward to the city's periphery, whereas in Angra do Heroísmo, there was a pattern of spreading outward from several foci. The heavy infestation observed in Angra do Heroísmo and the clear increase of infestation levels observed from 2010 to 2011 is a reason for concern and calls for an urgent application of an Integrated Pest Management (IPM) control strategy.


Subject(s)
Isoptera , Animals , Azores , Cities/statistics & numerical data , Population Density
5.
Phys Chem Chem Phys ; 15(39): 16377-407, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23897122

ABSTRACT

Advances in the design of materials for energy storage and conversion (i.e., "energy materials") increasingly rely on understanding the dependence of a material's performance and longevity on three-dimensional characteristics of its microstructure. Three-dimensional imaging techniques permit the direct measurement of microstructural properties that significantly influence material function and durability, such as interface area, tortuosity, triple phase boundary length and local curvature. Furthermore, digital representations of imaged microstructures offer realistic domains for modeling. This article reviews state-of-the-art methods, across a spectrum of length scales ranging from atomic to micron, for three-dimensional microstructural imaging of energy materials. The review concludes with an assessment of the continuing role of three-dimensional imaging in the development of novel materials for energy applications.

6.
J Biol Chem ; 288(5): 3097-111, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23204518

ABSTRACT

Osteopontin (OPN), which is highly expressed in malignant glioblastoma (GBM), possesses inflammatory activity modulated by proteolytic cleavage by thrombin and plasma carboxypeptidase B2 (CPB2) at a highly conserved cleavage site. Full-length OPN (OPN-FL) was elevated in cerebrospinal fluid (CSF) samples from all cancer patients compared with noncancer patients. However, thrombin-cleaved OPN (OPN-R) and thrombin/CPB2-double-cleaved OPN (OPN-L) levels were markedly increased in GBM and non-GBM gliomas compared with systemic cancer and noncancer patients. Cleaved OPN constituted ∼23 and ∼31% of the total OPN in the GBM and non-GBM CSF samples, respectively. OPN-R was also elevated in GBM tissues. Thrombin-antithrombin levels were highly correlated with cleaved OPN, but not OPN-FL, suggesting that the cleaved OPN fragments resulted from increased thrombin and CPB2 in this extracellular compartment. Levels of VEGF and CCL4 were increased in CSF of GBM and correlated with the levels of cleaved OPN. GBM cell lines were more adherent to OPN-R and OPN-L than OPN-FL. Adhesion to OPN altered gene expression, in particular genes involved with cellular processes, cell cycle regulation, death, and inflammation. OPN and its cleaved forms promoted motility of U-87 MG cells and conferred resistance to apoptosis. Although functional mutation of the RGD motif in OPN largely abolished these functions, OPN(RAA)-R regained significant cell binding and signaling function, suggesting that the SVVYGLR motif in OPN-R may substitute for the RGD motif if the latter becomes inaccessible. OPN cleavage contributes to GBM development by allowing more cells to bind in niches where they acquire anti-apoptotic properties.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Osteopontin/metabolism , Peptide Fragments/metabolism , Thrombin/metabolism , Amino Acid Sequence , Antithrombin III/metabolism , Apoptosis/genetics , Biomarkers, Tumor/cerebrospinal fluid , Brain Neoplasms/genetics , Cell Adhesion , Cell Line, Tumor , Cell Movement/genetics , Cell Survival , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Conserved Sequence , Gene Expression Regulation, Neoplastic , Glioma/genetics , Humans , Models, Biological , Molecular Sequence Data , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligopeptides/metabolism , Osteopontin/cerebrospinal fluid , Osteopontin/chemistry , Peptide Hydrolases/metabolism , Proteolysis , Sequence Alignment , Statistics, Nonparametric , Vascular Endothelial Growth Factor A/metabolism
7.
Blood ; 120(8): 1717-25, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22802338

ABSTRACT

The coagulation and complement pathways simultaneously promote homeostasis in response to injury but cause tissue damage when unregulated. Mechanisms by which they cooperate are poorly understood. To delineate their interactions, we studied the effects of thrombin and C5 convertase on C5 in purified and plasma-based systems, measuring release of the anaphylatoxin C5a, and generation of C5b, the initial component of the lytic membrane attack complex. Thrombin cleaved C5 poorly at R751, yielding minimal C5a and C5b. However, thrombin efficiently cleaved C5 at a newly identified, highly conserved R947 site, generating previously undescribed intermediates C5(T) and C5b(T). Tissue factor-induced clotting of plasma led to proteolysis of C5 at a thrombin-sensitive site corresponding to R947 and not R751. Combined treatment of C5 with thrombin and C5 convertase yielded C5a and C5b(T), the latter forming a C5b(T)-9 membrane attack complex with significantly more lytic activity than with C5b-9. Our findings provide a new paradigm for complement activation, in which thrombin and C5 convertase are invariant partners, enhancing the terminal pathway via the generation of newly uncovered C5 intermediates. Delineating the molecular links between coagulation and complement will provide new therapeutic targets for diseases associated with excess fibrin deposition and complement activation.


Subject(s)
Complement Activation , Complement C5/immunology , Thrombin/immunology , Animals , Blood Coagulation , Chickens , Complement C3-C5 Convertases/metabolism , Complement C5/metabolism , Erythrocytes/cytology , Erythrocytes/immunology , Hemolysis , Humans , Proteolysis , Signal Transduction , Thrombin/metabolism , Thromboplastin/metabolism
8.
Arterioscler Thromb Vasc Biol ; 30(7): 1363-70, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20431069

ABSTRACT

OBJECTIVE: To determine whether procarboxypeptidase B (pCPB)(-/-) mice are susceptible to accelerated abdominal aortic aneurysm (AAA) development secondary to unregulated OPN-mediated mural inflammation in the absence of CPB inhibition. METHODS AND RESULTS: Thrombin/thrombomodulin cleaves thrombin-activatable pCPB or thrombin-activatable fibrinolysis inhibitor, activating CPB, which inhibits the generation of plasmin and inactivates proinflammatory mediators (complement C5a and thrombin-cleaved osteopontin [OPN]). Apolipoprotein E(-/-)OPN(-/-) mice are protected from experimental AAA formation. Murine AAAs were created via intra-aortic porcine pancreatic elastase (PPE) infusion. Increased mortality secondary to AAA rupture was observed in pCPB(-/-) mice at the standard PPE dose. At reduced doses of PPE, pCPB(-/-) mice developed larger AAAs than wild-type controls (1.01+/-0.27 versus 0.68+/-0.05 mm; P=0.02 [mean+/-SD]). C5(-/-) and OPN(-/-) mice were not protected against AAA development. Treatment with tranexamic acid inhibited plasmin generation and abrogated enhanced AAA progression in pCPB(-/-) mice. CONCLUSIONS: This study establishes the role of CPB in experimental AAA disease, indicating that CPB has a broad anti-inflammatory role in vivo. Enhanced AAA formation in the PPE model is the result of increased plasmin generation, not unregulated C5a- or OPN-mediated mural inflammation.


Subject(s)
Aortic Aneurysm, Abdominal/enzymology , Aortic Rupture/enzymology , Carboxypeptidase B2/deficiency , Animals , Antifibrinolytic Agents/pharmacology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortic Rupture/chemically induced , Aortic Rupture/genetics , Aortic Rupture/pathology , Aortic Rupture/prevention & control , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Carboxypeptidase B2/genetics , Complement C5a/metabolism , Disease Models, Animal , Disease Progression , Fibrinolysin/metabolism , Inflammation Mediators/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteopontin/deficiency , Osteopontin/genetics , Pancreatic Elastase , Time Factors , Tranexamic Acid/pharmacology
9.
Arthritis Rheum ; 60(10): 2902-12, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19790060

ABSTRACT

OBJECTIVE: Osteopontin (OPN) is a proinflammatory cytokine that plays an important role in the pathogenesis of rheumatoid arthritis (RA). OPN can be cleaved by thrombin, resulting in OPN-R and exposing the cryptic C-terminal alpha4beta1 and alpha9beta1 integrin-binding motif (SVVYGLR). Thrombin-activatable carboxypeptidase B (CPB), also called thrombin-activatable fibrinolysis inhibitor, removes the C-terminal arginine from OPN-R, generating OPN-L and abrogating its enhanced cell binding. We undertook this study to investigate the roles of OPN-R and OPN-L in synoviocyte adhesion, which contributes to the formation of invasive pannus, and in neutrophil survival, which affects inflammatory infiltrates in RA. METHODS: Using specifically developed enzyme-linked immunosorbent assays, we tested the synovial fluid of patients with RA, osteoarthritis (OA), and psoriatic arthritis (PsA) to determine OPN-R, OPN-L, and full-length OPN (OPN-FL) levels. RESULTS: Elevated levels of OPN-R and OPN-L were found in synovial fluid samples from RA patients, but not in samples from OA or PsA patients. Increased levels of OPN-R and OPN-L correlated with increased levels of multiple inflammatory cytokines, including tumor necrosis factor alpha and interleukin-6. Immunohistochemical analyses revealed robust expression of OPN-FL, but only minimal expression of OPN-R, in RA synovium, suggesting that cleaved OPN is released into synovial fluid. In cellular assays, OPN-FL, and to a lesser extent OPN-R and OPN-L, had an antiapoptotic effect on neutrophils. OPN-R augmented RA fibroblast-like synoviocyte binding mediated by SVVYGLR binding to alpha4beta1, whereas OPN-L did not. CONCLUSION: Thrombin activation of OPN (resulting in OPN-R) and its subsequent inactivation by thrombin-activatable CPB (generating OPN-L) occurs locally within inflamed joints in RA. Our data suggest that thrombin-activatable CPB plays a central homeostatic role in RA by regulating neutrophil viability and reducing synoviocyte adhesion.


Subject(s)
Arthritis, Rheumatoid/metabolism , Carboxypeptidase B/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Osteopontin/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Thrombin/metabolism , Antibodies, Anti-Idiotypic/immunology , Apoptosis/physiology , Arthritis, Psoriatic/metabolism , Arthritis, Psoriatic/pathology , Arthritis, Psoriatic/physiopathology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/physiopathology , Cell Adhesion/physiology , Cell Survival/physiology , Humans , Interleukin-6/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Osteopontin/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
J Biol Chem ; 284(2): 751-8, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19010784

ABSTRACT

Chemerin is a potent chemoattractant for cells expressing the serpentine receptor CMKLR1 (chemokine-like receptor 1), such as plasmacytoid dendritic cells and tissue macrophages. The bioactivity of chemerin is post-translationally regulated; the attractant circulates in blood in a relatively inactive form (prochemerin) and is activated by carboxyl-terminal proteolytic cleavage. We discovered that plasma carboxypeptidase N (CPN) and B (CPB or activated thrombin-activable fibrinolysis inhibitor, TAFIa) enhanced the bioactivity of 10-mer chemerin peptide NH(2)-YFPGQFAFSK-COOH by removing the carboxyl-terminal lysine (K). Sequential cleavages of either a prochemerin peptide (NH(2)-YFPGQFAFSKALPRS-COOH) or recombinant full-length prochemerin by plasmin and CPN/CPB substantially increased their chemotactic activities. Endogenous CPN present in circulating plasma enhanced the activity of plasmin-cleaved prochemerin. In addition, we discovered that platelets store chemerin protein and release it upon stimulation. Thus circulating CPN/CPB and platelets may potentially contribute to regulating the bioactivity of leukocyte chemoattractant chemerin, and further extend the molecular link between blood coagulation/fibrinolysis and CMKLR1-mediated immune responses.


Subject(s)
Blood Platelets/metabolism , Carboxypeptidase B/metabolism , Chemokines/metabolism , Fibrinolysis , Lysine Carboxypeptidase/metabolism , Thrombin/antagonists & inhibitors , Animals , Cell Line , Chemokines/genetics , Chemokines/pharmacology , Enzyme Activation , Humans , Hydrolysis , Intercellular Signaling Peptides and Proteins , Kinetics , Lysine Carboxypeptidase/genetics , Mice , Platelet Activation , Protein Processing, Post-Translational , Thrombin/metabolism , Up-Regulation
11.
Adv Exp Med Biol ; 632: 61-9, 2008.
Article in English | MEDLINE | ID: mdl-19025114

ABSTRACT

Thrombin-activatable procarboxypeptidase B (proCPB or thrombin-activatable fibrinolysis inhibitor or TAFI) is a plasma procarboxypeptidase that is activated by the thrombin-thrombomodulin complex on the vascular endothelial surface. The activated CPB removes the newly exposed carboxyl terminal lysines in the partially digested fibrin clot, diminishes tissue plasminogen activator and plasminogen binding, and protects the clot from premature lysis. We have recently shown that CPB is catalytically more efficient than plasma CPN, the major plasma anaphylatoxin inhibitor, in inhibiting bradykinin, activated complement C3a, C5a, and thrombin-cleaved osteopontin in vitro. Using a thrombin mutant (E229K) that has minimal procoagulant properties but retains the ability to activate protein C and proCPB in vivo, we showed that infusion of E229K thrombin into wild type mice reduced bradykinin-induced hypotension but it had no effect in proCPB-deficient mice, indicating that the beneficial effect of E229K thrombin is mediated through its activation of proCPB and not protein C. Similarly proCPB-deficient mice displayed enhanced pulmonary inflammation in a C5a-induced alveolitis model and E229K thrombin ameliorated the magnitude of alveolitis in wild type but not proCPB-deficient mice. Thus, our in vitro and in vivo data support the thesis that thrombin-activatable CPB has broad anti-inflammatory properties. By specific cleavage of the carboxyl terminal arginines from C3a, C5a, bradykinin and thrombin-cleaved osteopontin, it inactivates these active inflammatory mediators. Along with the activation of protein C, the activation of proCPB by the endothelial thrombin-thrombomodulin complex represents a homeostatic feedback mechanism in regulating thrombin's pro-inflammatory functions in vivo.


Subject(s)
Carboxypeptidase B2/physiology , Carboxypeptidase B/pharmacology , Inflammation , Thrombin/physiology , Animals , Carboxypeptidase B/metabolism , Carboxypeptidase B2/blood , Carboxypeptidase B2/metabolism , Mice , Models, Immunological , Thrombin/metabolism , Thrombin/pharmacology , Thrombomodulin/chemistry , Thrombomodulin/metabolism
12.
Mol Immunol ; 45(16): 4080-3, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18706698

ABSTRACT

Thrombin-activatable procarboxypeptidase B (proCPB or thrombin-activatable fibrinolysis inhibitor or TAFI) is a plasma procarboxypeptidase that is activated by the thrombin-thrombomodulin complex on the vascular endothelial surface. The activated CPB removes the newly exposed carboxyl terminal lysines in the partially digested fibrin clot, diminishes tissue plasminogen activator and plasminogen binding, and protects the clot from premature lysis. We have recently shown that CPB is catalytically more efficient than plasma CPN, the major plasma anaphylatoxin inhibitor, in inhibiting bradykinin, activated complement C3a, C5a, and thrombin-cleaved osteopontin in vitro. Using a thrombin mutant (E229K) that has minimal procoagulant properties but retains the ability to activate protein C and proCPB in vivo, we showed that infusion of E229K thrombin into wild-type mice reduced bradykinin-induced hypotension but it had no effect in proCPB-deficient mice, indicating that the beneficial effect of E229K thrombin is mediated through its activation of proCPB and not protein C. Similarly proCPB-deficient mice displayed enhanced pulmonary inflammation in a C5a-induced alveolitis model and E229K thrombin ameliorated the magnitude of alveolitis in wild-type but not proCPB-deficient mice. ProCPB-deficient mice also displayed enhanced arthritis in an inflammatory arthritis model. Thus, our in vitro and in vivo data support the thesis that thrombin-activatable CPB has broad anti-inflammatory properties. By specific cleavage of the carboxyl terminal arginines from C3a, C5a, bradykinin and thrombin-cleaved osteopontin, it inactivates these active inflammatory mediators. Along with the activation of protein C, the activation of proCPB by the endothelial thrombin-thrombomodulin complex represents a homeostatic feedback mechanism in regulating thrombin's pro-inflammatory functions in vivo.


Subject(s)
Carboxypeptidase B2/physiology , Carboxypeptidase B/pharmacology , Inflammation , Thrombin/physiology , Animals , Carboxypeptidase B/metabolism , Carboxypeptidase B2/blood , Carboxypeptidase B2/metabolism , Mice , Models, Immunological , Thrombin/metabolism , Thrombin/pharmacology , Thrombomodulin/chemistry , Thrombomodulin/metabolism
13.
J Biol Chem ; 283(26): 17789-96, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18413297

ABSTRACT

The cytokine osteopontin (OPN) can be hydrolyzed by thrombin exposing a cryptic alpha(4)beta(1)/alpha(9)beta(1) integrin-binding motif (SVVYGLR), thereby acting as a potent cytokine for cells bearing these activated integrins. We show that purified milk OPN is a substrate for thrombin with a k(cat)/K(m) value of 1.14 x 10(5) m(-1) s(-1). Thrombin cleavage of OPN was inhibited by unsulfated hirugen (IC(50) = 1.2 +/- 0.2 microm), unfractionated heparin (IC(50) = 56.6 +/- 8.4 microg/ml) and low molecular weight (5 kDa) heparin (IC(50) = 31.0 +/- 7.9 microg/ml), indicating the involvement of both anion-binding exosite I (ABE-I) and anion-binding exosite II (ABE-II). Using a thrombin mutant library, we mapped residues important for recognition and cleavage of OPN within ABE-I and ABE-II. A peptide (OPN-(162-197)) was designed spanning the OPN thrombin cleavage site and a hirudin-like C-terminal tail domain. Thrombin cleaved OPN-(162-197) with a specificity constant of k(cat)/K(m) = 1.64 x 10(4) m(-1) s(-1). Representative ABE-I mutants (K65A, H66A, R68A, Y71A, and R73A) showed greatly impaired cleavage, whereas the ABE-II mutants were unaffected, suggesting that ABE-I interacts principally with the hirudin-like OPN domain C-terminal and contiguous to the thrombin cleavage site. Debye-Hückel slopes for milk OPN (-4.1 +/- 1.0) and OPN-(162-197) (-2.4 +/- 0.2) suggest that electrostatic interactions play an important role in thrombin recognition and cleavage of OPN. Thus, OPN is a bona fide substrate for thrombin, and generation of thrombin-cleaved OPN with enhanced pro-inflammatory properties provides another molecular link between coagulation and inflammation.


Subject(s)
Hydrolysis , Osteopontin/chemistry , Osteopontin/metabolism , Thrombin/chemistry , Amino Acid Motifs , Anions , Binding Sites , Blood Coagulation , Humans , Inflammation , Inhibitory Concentration 50 , Integrins/chemistry , Kinetics , Milk, Human/metabolism , Mutation , Protein Structure, Tertiary
15.
Blood ; 109(5): 1992-7, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17105819

ABSTRACT

Plasma procarboxypeptidase B (proCPB) is activated by the endothelial thrombin-thrombomodulin [corrected] complex. Activated proCPB [corrected] (CPB) functions as a fibrinolysis inhibitor, but it may play a broader role by inactivating inflammatory mediators. To test this hypothesis, C5a-induced alveolitis was studied in wild-type (WT) and proCPB-deficient mice (proCPB-/-). C5a-induced alveolitis, as measured by cell counts and total protein contents in bronchoalveolar lavage fluids, was markedly enhanced in the proCPB-/- mice. E229K thrombin, a thrombin mutant with minimal clotting activity but retaining its ability to activate protein C and proCPB, attenuated C5a-induced alveolitis in WT but not in proCPB-/- mice, indicating that its beneficial effect is mediated primarily by its activation of proCPB. Lung tissue histology confirmed these cellular inflammatory responses. Delayed administration of E229K thrombin after the C5a instillation was ineffective in reducing alveolitis in WT mice, suggesting that the beneficial effect of E229K thrombin is due to the direct inhibition of C5a by CPB. Our studies show that thrombin-activatable proCPB, in addition to its role in fibrinolysis, has intrinsic anti-inflammatory functions. Its activation, along with protein C, by the endothelial thrombin-TM complex represents a homeostatic response to counteract the inflammatory mediators generated at the site of vascular injury.


Subject(s)
Carboxypeptidase B/metabolism , Complement C5a/metabolism , Thrombin/metabolism , Animals , Bronchoalveolar Lavage , CHO Cells , Carboxypeptidase B/deficiency , Carboxypeptidase B/genetics , Cricetinae , Cricetulus , Cytokines/metabolism , Enzyme Activation , Glutamic Acid/genetics , Glutamic Acid/metabolism , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Mice , Mice, Inbred C57BL , Mutation/genetics , Thrombin/administration & dosage , Thrombin/genetics , Thrombin/pharmacology , Time Factors
16.
Arterioscler Thromb Vasc Biol ; 26(3): 670-5, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16357309

ABSTRACT

OBJECTIVE: Thrombin interacts with platelets via the protease-activated receptors (PARs) 1 and 4, and via glycoprotein Ibalpha (GPIbalpha). Recently, it was shown that platelets are able to adhere to immobilized thrombin under static conditions via GPIbalpha. METHODS AND RESULTS: Here, we show that platelets are also able to adhere to and form stable aggregates on immobilized thrombin under conditions of flow. Adhesion and aggregation to thrombin was dependent on the interaction with GPIbalpha, as addition of glycocalicin or an antibody blocking the interaction between thrombin and GPIbalpha inhibited platelet adhesion. Additionally, platelet adhesion to recombinant thrombin mutants, which are unable to bind GPIbalpha, was severely suppressed. Furthermore, platelet adhesion to thrombin was dependent on activation of PARs, and partly on granule secretion and thromboxane-A2 synthesis. Immobilization of thrombin on a fibrin network resulted in substantially increased adhesion compared with fibrin alone. The adhesion to fibrin alone was completely abolished by addition of dRGDW, whereas fibrin-bound thrombin still showed substantial platelet adhesion in the presence of dRGDW, indicating that fibrin-bound thrombin is able to directly capture platelets under flow. CONCLUSIONS: These results indicate that platelets are able to adhere to thrombin under flow conditions, which is dependent on the interaction with GPIbalpha.


Subject(s)
Blood Platelets/physiology , Hemostasis/physiology , Platelet Adhesiveness/physiology , Platelet Aggregation/physiology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombin/metabolism , Thrombosis/physiopathology , Blood Platelets/ultrastructure , Fibrin/metabolism , Fibrin/pharmacology , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Regional Blood Flow , Stress, Mechanical , Thrombin/pharmacology
17.
J Biol Chem ; 280(18): 18476-87, 2005 May 06.
Article in English | MEDLINE | ID: mdl-15746105

ABSTRACT

Thrombin catalyzes the proteolytic activation of factor VIII, cleaving two sites in the heavy chain and one site in the light chain of the procofactor. Evaluation of thrombin binding the reaction products from heavy chain cleavage by steady state fluorescence energy transfer using a fluorophore-labeled, active site-modified thrombin as well as by solid phase binding assays using a thrombin Ser(205) --> Ala mutant indicated a high affinity site in the A1 subunit (K(d) approximately 5 nm) that was dependent upon the Na(+)-bound form of thrombin, whereas a moderate affinity site in the A2 subunit (K(d) approximately 100 nm) was observed for both Na(+)-bound and -free forms. The solid phase assay also indicated that hirudin blocked thrombin interaction with the A1 subunit and had little, if any, effect on its interaction with the A2 subunit. Conversely, heparin blocked thrombin interaction with the A2 subunit and showed a marginal effect on A1 binding. Evaluation of the A2 sequence revealed two regions rich in acidic residues that are localized close to the N and C termini of this domain. Peptides encompassing these clustered acidic regions, residues 373-395 and 719-740, blocked thrombin cleavage of the isolated heavy chain at Arg(372) and Arg(740) and inhibited A2 binding to thrombin Ser(205) --> Ala, suggesting that both A2 domain regions potentially support interaction with thrombin. A B-domainless, factor VIII double mutant Asp(392) --> Ala/Asp(394) --> Ala was constructed, expressed, and purified and possessed specific activity equivalent to a severe hemophilia phenotype. This mutant was resistant to cleavage at Arg(740), whereas cleavage at Arg(372) was not affected. These data suggest the acidic region comprising residues 389-394 in factor VIII A2 domain interacts with thrombin via its heparin-binding exosite and facilitates cleavage at Arg(740) during procofactor activation.


Subject(s)
Factor VIII/metabolism , Peptide Fragments/metabolism , Protein Subunits/metabolism , Thrombin/metabolism , Catalysis/drug effects , Factor VIII/chemistry , Factor VIII/physiology , Humans , Hydrolysis , Peptide Fragments/chemistry , Peptide Fragments/physiology , Protein Binding/physiology , Protein Structure, Tertiary/physiology , Protein Subunits/chemistry , Protein Subunits/physiology , Thrombin/chemistry , Thrombin/physiology
18.
J Biol Chem ; 279(41): 43237-44, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15292227

ABSTRACT

We used 55 Ala-scanned recombinant thrombin molecules to define residues important for inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) in the absence and presence of glycosaminoglycans. We verified the importance of numerous basic residues in anion-binding exosite-1 (exosite-1) and found 4 additional residues, Gln24, Lys65, His66, and Tyr71 (using the thrombin numbering system), that were resistant to HCII inhibition with and without glycosaminoglycans. Inhibition rate constants for these exosite-1 (Q24A, K65A, H66A, Y71A) thrombin mutants (0.02-0.38 x 10(8) m(-1) min(-1) for HCII-heparin when compared with 2.36 x 10(8) m(-1) min(-1) with wild-type thrombin and 0.03-0.53 x 10(8) m(-1) min(-1) for HCII-dermatan sulfate when compared with 5.23 x 10(8) m(-1) min(-1) with wild-type thrombin) confirmed that the structural integrity of thrombin exosite-1 is critical for optimal HCII-thrombin interactions in the presence of glycosaminoglycans. However, our results are also consistent for HCII-glycosaminoglycan-thrombin ternary complex formation. Ten residues surrounding the active site of thrombin were implicated in HCII interactions. Four mutants (Asp51, Lys52, Lys145/Thr147/Trp148, Asp234) showed normal increased rates of inhibition by HCII-glycosaminoglycans, whereas four mutants (Trp50, Glu202, Glu229, Arg233) remained resistant to inhibition by HCII with glycosaminoglycans. Using 11 exosite-2 thrombin mutants with 20 different mutated residues, we saw no major perturbations of HCII-glycosaminoglycan inhibition reactions. Collectively, our results support a "double bridge" mechanism for HCII inhibition of thrombin in the presence of glycosaminoglycans, which relies in part on ternary complex formation but is primarily dominated by an allosteric process involving contact of the "hirudin-like" domain of HCII with thrombin exosite-1.


Subject(s)
Heparin Cofactor II/chemistry , Thrombin/chemistry , Alanine/chemistry , Allosteric Site , Binding Sites , Dermatan Sulfate/chemistry , Dose-Response Relationship, Drug , Glutamine/chemistry , Glycosaminoglycans/chemistry , Histidine/chemistry , Humans , Kinetics , Lysine/chemistry , Models, Molecular , Mutagenesis , Mutation , Protein Binding , Structure-Activity Relationship , Thrombin/metabolism , Time Factors , Tyrosine/chemistry
19.
J Biol Chem ; 279(25): 26387-94, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15075325

ABSTRACT

Thrombin is the ultimate protease of the blood clotting cascade and plays a major role in its own regulation. The ability of thrombin to exhibit both pro- and anti-coagulant properties has spawned efforts to turn thrombin into an anticoagulant for therapeutic purposes. This quest culminated in the identification of the E217K variant through scanning and saturation mutagenesis. The antithrombotic properties of E217K thrombin are derived from its inability to convert fibrinogen to a fibrin clot while maintaining its thrombomodulin-dependent ability to activate the anticoagulant protein C pathway. Here we describe the 2.5-A crystal structure of human E217K thrombin, which displays a dramatic restructuring of the geometry of the active site. Of particular interest is the repositioning of Glu-192, which hydrogen bonds to the catalytic Ser-195 and which results in the complete occlusion of the active site and the destruction of the oxyanion hole. Substrate binding pockets are further blocked by residues previously implicated in thrombin allostery. We have concluded that the E217K mutation causes the allosteric inactivation of thrombin by destabilizing the Na(+) binding site and that the structure thus may represent the Na(+)-free, catalytically inert "slow" form.


Subject(s)
Thrombin/chemistry , Allosteric Site , Binding Sites , Catalysis , Crystallography, X-Ray , Humans , Hydrogen Bonding , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Sodium/chemistry , Sodium/metabolism , Thrombin/genetics
20.
J Biol Chem ; 278(51): 51059-67, 2003 Dec 19.
Article in English | MEDLINE | ID: mdl-14525995

ABSTRACT

The latent plasma carboxypeptidase thrombin-activable fibrinolysis inhibitor (TAFI) is activated by thrombin/thrombomodulin on the endothelial cell surface, and functions in dampening fibrinolysis. In this study, we examined the effect of activated TAFI (TAFIa) in modulating the proinflammatory functions of bradykinin, complement C5a, and thrombin-cleaved osteopontin. Hydrolysis of bradykinin and C5a and thrombin-cleaved osteopontin peptides by TAFIa was as efficient as that of plasmin-cleaved fibrin peptides, indicating that these are also good substrates for TAFIa. Plasma carboxypeptidase N, generally regarded as the physiological regulator of kinins, was much less efficient than TAFIa. TAFIa abrogated C5a-induced neutrophil activation in vitro. Jurkat cell adhesion to osteopontin was markedly enhanced by thrombin cleavage of osteopontin. This was abolished by TAFIa treatment due to the removal of the C-terminal Arg168 by TAFIa from the exposed SVVYGLR alpha 4 beta 1 integrin-binding site in thrombin-cleaved osteopontin. Thus, thrombin cleavage of osteopontin followed by TAFIa treatment may sequentially up- and down-modulate the pro-inflammatory properties of osteopontin. An engineered anticoagulant thrombin, E229K, was able to activate endogenous plasma TAFI in mice, and E229K thrombin infusion effectively blocked bradykinin-induced hypotension in wild-type, but not in TAFI-deficient, mice in vivo. Our data suggest that TAFIa may have a broad anti-inflammatory role, and its function is not restricted to fibrinolysis.


Subject(s)
Carboxypeptidase B2/physiology , Endothelium, Vascular/pathology , Inflammation/etiology , Animals , Blood Cells , Bradykinin/metabolism , Carboxypeptidase B2/metabolism , Cell Adhesion , Complement C3a/metabolism , Complement C5a/metabolism , Humans , Hypotension , Jurkat Cells , Male , Mice , Mice, Inbred C57BL , Neutrophil Activation , Osteopontin , Sialoglycoproteins/metabolism , Thrombin/genetics , Thrombin/metabolism , Thrombin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...