Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mycotoxin Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743341

ABSTRACT

Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.

2.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436695

ABSTRACT

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Subject(s)
Aflatoxins , Rats , Mice , Animals , Aflatoxins/metabolism , Aflatoxins/toxicity , Lysine/metabolism , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Liver/metabolism , Aflatoxin B1/toxicity , Guanine/metabolism , Intravital Microscopy
3.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38466352

ABSTRACT

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Rats , Humans , Male , Animals , Acetaminophen/toxicity , Acetaminophen/metabolism , Bile/metabolism , Chromatography, Liquid , Chemical and Drug Induced Liver Injury/pathology , Rats, Wistar , Tandem Mass Spectrometry , Liver/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Tight Junction Proteins/metabolism
4.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939855

ABSTRACT

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Subject(s)
Carrier Proteins , Cholestasis , Kidney Diseases , Liver Diseases , Membrane Glycoproteins , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Mice , Animals , Cholestasis/complications , Cholestasis/metabolism , Kidney/metabolism , Symporters/metabolism , Bile Acids and Salts/metabolism , Liver/metabolism , Bile Ducts/metabolism , Liver Diseases/metabolism , Sodium
5.
Front Pharmacol ; 14: 1279357, 2023.
Article in English | MEDLINE | ID: mdl-38053838

ABSTRACT

Rationale: Liver cirrhosis is known to affect drug pharmacokinetics, but the functional assessment of the underlying pathophysiological alterations in drug metabolism is difficult. Methods: Cirrhosis in mice was induced by repeated treatment with carbon tetrachloride for 12 months. A cocktail of six drugs was administered, and parent compounds as well as phase I and II metabolites were quantified in blood, bile, and urine in a time-dependent manner. Pharmacokinetics were modeled in relation to the altered expression of metabolizing enzymes. In discrepancy with computational predictions, a strong increase of glucuronides in blood was observed in cirrhotic mice compared to vehicle controls. Results: The deviation between experimental findings and computational simulations observed by analyzing different hypotheses could be explained by increased sinusoidal export and corresponded to increased expression of export carriers (Abcc3 and Abcc4). Formation of phase I metabolites and clearance of the parent compounds were surprisingly robust in cirrhosis, although the phase I enzymes critical for the metabolism of the administered drugs in healthy mice, Cyp1a2 and Cyp2c29, were downregulated in cirrhotic livers. RNA-sequencing revealed the upregulation of numerous other phase I metabolizing enzymes which may compensate for the lost CYP isoenzymes. Comparison of genome-wide data of cirrhotic mouse and human liver tissue revealed similar features of expression changes, including increased sinusoidal export and reduced uptake carriers. Conclusion: Liver cirrhosis leads to increased blood concentrations of glucuronides because of increased export from hepatocytes into the sinusoidal blood. Although individual metabolic pathways are massively altered in cirrhosis, the overall clearance of the parent compounds was relatively robust due to compensatory mechanisms.

6.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759553

ABSTRACT

Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.


Subject(s)
Diet, Western , Fatty Liver , Animals , Mice , Diet, Western/adverse effects , Cognition , Brain
7.
Arch Toxicol ; 96(12): 3349-3361, 2022 12.
Article in English | MEDLINE | ID: mdl-36227364

ABSTRACT

The mycotoxin ochratoxin A (OTA) is a contaminant in food that causes nephrotoxicity and to a minor degree hepatotoxicity. Recently, we observed that OTA induces liver damage preferentially to the cytochrome P450 (CYP)-expressing pericentral lobular zone, similar to hepatotoxic substances known to be metabolically toxified by CYP, such as acetaminophen or carbon tetrachloride. To investigate whether CYP influences OTA toxicity, we used a single dose of OTA (7.5 mg/kg; intravenous) with and without pre-treatment with the pan CYP-inhibitor 1-aminobenzotriazole (ABT) 2 h before OTA administration. Blood, urine, as well as liver and kidney tissue samples were collected 24 h after OTA administration for biochemical and histopathological analyses. Inhibition of CYPs by ABT strongly increased the nephro- and hepatotoxicity of OTA. The urinary kidney damage biomarkers kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were increased > 126-fold and > 20-fold, respectively, in mice treated with ABT and OTA compared to those receiving OTA alone. The blood biomarkers of liver damage, alanine transaminase (ALT) and aspartate transaminase (AST) both increased > 21- and 30-fold, respectively, when OTA was administered to ABT pre-treated mice compared to the effect of OTA alone. Histological analysis of the liver revealed a pericentral lobular damage induced by OTA despite CYP-inhibition by ABT. Administration of ABT alone caused no hepato- or nephrotoxicity. Overall, the results presented are compatible with a scenario where CYPs mediate the detoxification of OTA, yet the mechanisms responsible for the pericental liver damage pattern still remain to be elucidated.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Mycotoxins , Animals , Mice , Lipocalin-2 , Carbon Tetrachloride , Acetaminophen/toxicity , Alanine Transaminase , Cytochrome P-450 Enzyme System/metabolism , Chemical and Drug Induced Liver Injury/etiology , Biomarkers , Aspartate Aminotransferases
8.
Arch Toxicol ; 96(11): 3067-3076, 2022 11.
Article in English | MEDLINE | ID: mdl-36102954

ABSTRACT

Colchicine is an anti-inflammatory drug with a narrow therapeutic index. Its binding to tubulin prevents microtubule polymerization; however, little is known about how depolymerization of microtubules interferes with the phagocytosis function of Kupffer cells (KC). Here, we applied functional intravital imaging techniques to investigate the influence of microtubule disruption by colchicine on KC morphology, as well as its capacity to clear foreign particles and bacterial lipopolysaccharide (LPS) in anesthetized mice. Intravital imaging of KC in healthy mice showed the typical elongated morphology, localization at the luminal side of the sinusoidal endothelial cells, and moving cell protrusions. In contrast, at colchicine doses of 1 mg/kg and higher (intraperitoneal), KC appeared roundish with strongly reduced protrusions and motility. To study the functional consequences of these alterations, we analyzed the capacity of KC to phagocytose fluorescent nanospheres (100 nm-size) and LPS. After tail vein injection, the nanospheres formed aggregates of up to ~ 5 µm moving along the sinusoidal bloodstream. In controls, the nanosphere aggregates were rapidly captured by the Kupffer cell protrusions, followed by an internalization process that lasted up to 10 min. Similar capture events and internalization processes were observed after the administration of fluorescently labeled LPS. In contrast, capture and internalization of both nanospheres and LPS by KC were strongly reduced in colchicine-treated mice. Reduced phagocytosis of LPS was accompanied by aggravated production of inflammatory cytokines. Since 0.4 mg/kg colchicine in mice has been reported to be bio-equivalent to human therapeutic doses, the here-observed adverse effects on KC occurred at doses only slightly above those used clinically, and may be critical for patients with endotoxemia due to a leaky gut-blood barrier.


Subject(s)
Kupffer Cells , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/pharmacology , Colchicine/metabolism , Colchicine/toxicity , Cytokines/metabolism , Endothelial Cells/metabolism , Endotoxins , Humans , Lipopolysaccharides/toxicity , Mice , Tubulin/metabolism
9.
Arch Toxicol ; 96(11): 2967-2981, 2022 11.
Article in English | MEDLINE | ID: mdl-35962801

ABSTRACT

Hypoalbuminemia (HA) is frequently observed in systemic inflammatory diseases and in liver disease. However, the influence of HA on the pharmacokinetics and toxicity of compounds with high plasma albumin binding remained insufficiently studied. The 'lack-of-delivery-concept' postulates that HA leads to less carrier mediated uptake of albumin bound substances into hepatocytes and to less glomerular filtration; in contrast, the 'concept-of-higher-free-fraction' argues that increased concentrations of non-albumin bound compounds facilitate hepatocellular uptake and enhance glomerular filtration. To address this question, we performed intravital imaging on livers and kidneys of anesthetized mice to quantify the spatio-temporal tissue distribution of the mycotoxin ochratoxin A (OTA) based on its auto-fluorescence in albumin knockout and wild-type mice. HA strongly enhanced the uptake of OTA from the sinusoidal blood into hepatocytes, followed by faster secretion into bile canaliculi. These toxicokinetic changes were associated with increased hepatotoxicity in heterozygous albumin knockout mice for which serum albumin was reduced to a similar extent as in patients with severe hypoalbuminemia. HA also led to a shorter half-life of OTA in renal capillaries, increased glomerular filtration, and to enhanced uptake of OTA into tubular epithelial cells. In conclusion, the results favor the 'concept-of-higher-free-fraction' in HA; accordingly, HA causes an increased tissue uptake of compounds with high albumin binding and increased organ toxicity. It should be studied if this concept can be generalized to all compounds with high plasma albumin binding that are substrates of hepatocyte and renal tubular epithelial cell carriers.


Subject(s)
Hypoalbuminemia , Mycotoxins , Ochratoxins , Animals , Hypoalbuminemia/metabolism , Kidney/metabolism , Liver/metabolism , Mice , Mycotoxins/metabolism , Ochratoxins/chemistry , Serum Albumin/metabolism , Tissue Distribution
10.
J Hepatol ; 77(1): 71-83, 2022 07.
Article in English | MEDLINE | ID: mdl-35131407

ABSTRACT

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug Overdose , Acetaminophen/metabolism , Acetylcysteine/pharmacology , Animals , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL
11.
Hepatol Commun ; 6(1): 161-177, 2022 01.
Article in English | MEDLINE | ID: mdl-34558834

ABSTRACT

Mouse models are frequently used to study chronic liver diseases (CLDs). To assess their translational relevance, we quantified the similarity of commonly used mouse models to human CLDs based on transcriptome data. Gene-expression data from 372 patients were compared with data from acute and chronic mouse models consisting of 227 mice, and additionally to nine published gene sets of chronic mouse models. Genes consistently altered in humans and mice were mapped to liver cell types based on single-cell RNA-sequencing data and validated by immunostaining. Considering the top differentially expressed genes, the similarity between humans and mice varied among the mouse models and depended on the period of damage induction. The highest recall (0.4) and precision (0.33) were observed for the model with 12-months damage induction by CCl4 and by a Western diet, respectively. Genes consistently up-regulated between the chronic CCl4 model and human CLDs were enriched in inflammatory and developmental processes, and mostly mapped to cholangiocytes, macrophages, and endothelial and mesenchymal cells. Down-regulated genes were enriched in metabolic processes and mapped to hepatocytes. Immunostaining confirmed the regulation of selected genes and their cell type specificity. Genes that were up-regulated in both acute and chronic models showed higher recall and precision with respect to human CLDs than exclusively acute or chronic genes. Conclusion: Similarly regulated genes in human and mouse CLDs were identified. Despite major interspecies differences, mouse models detected 40% of the genes significantly altered in human CLD. The translational relevance of individual genes can be assessed at https://saezlab.shinyapps.io/liverdiseaseatlas/.


Subject(s)
Disease Models, Animal , Gene Expression Profiling , Liver Diseases/genetics , Transcriptome , Animals , Chronic Disease , Down-Regulation , Humans , Mice , Species Specificity , Up-Regulation
12.
Hepatology ; 75(5): 1095-1109, 2022 05.
Article in English | MEDLINE | ID: mdl-34927748

ABSTRACT

BACKGROUND AND AIMS: Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS: Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS: Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Cholestasis , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Bile Acids and Salts/metabolism , Cholestasis/pathology , Endotoxins , Inflammation/metabolism , Kinetics , Lipopolysaccharides/metabolism , Liver/pathology , Mice , Mice, Knockout
13.
Cells ; 10(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34685496

ABSTRACT

Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.


Subject(s)
Carcinoma, Hepatocellular/pathology , Diet, Western/adverse effects , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Disease Models, Animal , Disease Progression , Liver/metabolism , Mice , Mice, Inbred C57BL
14.
Nat Metab ; 3(9): 1228-1241, 2021 09.
Article in English | MEDLINE | ID: mdl-34552267

ABSTRACT

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease of unknown aetiology for which there are no approved therapeutic options. Patients with PSC display changes in gut microbiota and in bile acid (BA) composition; however, the contribution of these alterations to disease pathogenesis remains controversial. Here we identify a role for microbiota-dependent changes in BA synthesis that modulates PSC pathophysiology. In a genetic mouse model of PSC, we show that loss of microbiota-mediated negative feedback control of BA synthesis results in increased hepatic BA concentrations, disruption of bile duct barrier function and, consequently, fatal liver injury. We further show that these changes are dependent on decreased BA signalling to the farnesoid X receptor, which modulates the activity of the rate-limiting enzyme in BA synthesis, CYP7A1. Moreover, patients with advanced stages of PSC show suppressed BA synthesis as measured by serum C4 levels, which is associated with poor disease prognosis. Our preclinical data highlight the microbiota-dependent dynamics of BA metabolism in cholestatic liver disease, which could be important for future therapies targeting BA and gut microbiome interactions, and identify C4 as a potential biomarker to functionally stratify patients with PSC and predict disease outcomes.


Subject(s)
Bile Acids and Salts/metabolism , Cholestasis/metabolism , Gastrointestinal Microbiome , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Anti-Bacterial Agents/administration & dosage , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/pathology , Humans , Liver/metabolism , Mice , Prognosis , ATP-Binding Cassette Sub-Family B Member 4
15.
Arch Toxicol ; 95(6): 2163-2177, 2021 06.
Article in English | MEDLINE | ID: mdl-34003344

ABSTRACT

Local accumulation of xenobiotics in human and animal tissues may cause adverse effects. Large differences in their concentrations may exist between individual cell types, often due to the expression of specific uptake and export carriers. Here we established a two-photon microscopy-based technique for spatio-temporal detection of the distribution of mycotoxins in intact kidneys and livers of anesthetized mice with subcellular resolution. The mycotoxins ochratoxin A (OTA, 10 mg/kg b.w.) and aflatoxin B1 (AFB1, 1.5 mg/kg b.w.), which both show blue auto-fluorescence, were analyzed after intravenous bolus injections. Within seconds after administration, OTA was filtered by glomeruli, and enriched in distal tubular epithelial cells (dTEC). A striking feature of AFB1 toxicokinetics was its very rapid uptake from sinusoidal blood into hepatocytes (t1/2 ~ 4 min) and excretion into bile canaliculi. Interestingly, AFB1 was enriched in the nuclei of hepatocytes with zonal differences in clearance. In the cytoplasm of pericentral hepatocytes, the half-life (t1/2~ 63 min) was much longer compared to periportal hepatocytes of the same lobules (t1/2 ~ 9 min). In addition, nuclear AFB1 from periportal hepatocytes cleared faster compared to the pericentral region. These local differences in AFB1 clearance may be due to the pericentral expression of cytochrome P450 enzymes that activate AFB1 to protein- and DNA-binding metabolites. In conclusion, the present study shows that large spatio-temporal concentration differences exist within the same tissues and its analysis may provide valuable additional information to conventional toxicokinetic studies.


Subject(s)
Aflatoxin B1/pharmacokinetics , Kidney/metabolism , Liver/metabolism , Ochratoxins/pharmacokinetics , Animals , Cytochrome P-450 Enzyme System/metabolism , Half-Life , Hepatocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy/methods , Spatio-Temporal Analysis , Tissue Distribution
16.
EXCLI J ; 20: 625-627, 2021.
Article in English | MEDLINE | ID: mdl-33883987
17.
Cell Mol Gastroenterol Hepatol ; 11(4): 909-933, 2021.
Article in English | MEDLINE | ID: mdl-33189892

ABSTRACT

BACKGROUND & AIMS: Acute liver failure (ALF) represents an unmet medical need in Western countries. Although the link between intestinal dysbiosis and chronic liver disease is well-established, there is little evidence for a functional role of gut-liver interaction during ALF. Here we hypothesized that intestinal dysbiosis may affect ALF. METHODS: To test this hypothesis, we assessed the association of proton pump inhibitor (PPI) or long-term antibiotics (ABx) intake, which have both been linked to intestinal dysbiosis, and occurrence of ALF in the 500,000 participants of the UK BioBank population-based cohort. For functional studies, male Nlrp6-/- mice were used as a dysbiotic mouse model and injected with a sublethal dose of acetaminophen (APAP) or lipopolysaccharide (LPS) to induce ALF. RESULTS: Multivariate Cox regression analyses revealed a significantly increased risk (odds ratio, 2.3-3) for developing ALF in UK BioBank participants with PPI or ABx. Similarly, dysbiotic Nlrp6-/- mice displayed exacerbated APAP- and LPS-induced liver injury, which was linked to significantly reduced gut and liver tissue microbiota diversity and correlated with increased intestinal permeability at baseline. Fecal microbiota transfer (FMT) from Nlrp6-/- mice into wild-type (WT) mice augmented liver injury on APAP treatment in recipient WT mice, resembling the inflammatory phenotype of Nlrp6-/- mice. Specifically, FMT skewed monocyte polarization in WT mice toward a Ly6Chi inflammatory phenotype, suggesting a critical function of these cells as sensors of gut-derived signals orchestrating the inflammatory response. CONCLUSIONS: Our data show an important yet unknown function of intestinal microbiota during ALF. Intestinal dysbiosis was transferrable to healthy WT mice via FMT and aggravated liver injury. Our study highlights intestinal microbiota as a targetable risk factor for ALF.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Dysbiosis/complications , Gastrointestinal Microbiome , Receptors, Cell Surface/physiology , Analgesics, Non-Narcotic/toxicity , Animals , Chemical and Drug Induced Liver Injury/etiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Permeability
19.
Cells ; 8(12)2019 12 02.
Article in English | MEDLINE | ID: mdl-31810365

ABSTRACT

Little is known about how liver fibrosis influences lobular zonation. To address this question, we used three mouse models of liver fibrosis, repeated CCl4 administration for 2, 6 and 12 months to induce pericentral damage, as well as bile duct ligation (21 days) and mdr2-/- mice to study periportal fibrosis. Analyses were performed by RNA-sequencing, immunostaining of zonated proteins and image analysis. RNA-sequencing demonstrated a significant enrichment of pericentral genes among genes downregulated by CCl4; vice versa, periportal genes were enriched among the upregulated genes. Immunostaining showed an almost complete loss of pericentral proteins, such as cytochrome P450 enzymes and glutamine synthetase, while periportal proteins, such as arginase 1 and CPS1 became expressed also in pericentral hepatocytes. This pattern of fibrosis-associated 'periportalization' was consistently observed in all three mouse models and led to complete resistance to hepatotoxic doses of acetaminophen (200 mg/kg). Characterization of the expression response identified the inflammatory pathways TGFß, NFκB, TNFα, and transcription factors NFKb1, Stat1, Hif1a, Trp53, and Atf1 among those activated, while estrogen-associated pathways, Hnf4a and Hnf1a, were decreased. In conclusion, liver fibrosis leads to strong alterations of lobular zonation, where the pericentral region adopts periportal features. Beside adverse consequences, periportalization supports adaptation to repeated doses of hepatotoxic compounds.


Subject(s)
Disease Susceptibility , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Animals , Biopsy , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Male , Mice , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...