Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Geophys Res Space Phys ; 127(12): e2022JA030398, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37032655

ABSTRACT

We analyze observations of a solar energetic particle (SEP) event at Rosetta's target comet 67P/Churyumov-Gerasimenko during 6-10 March 2015. The comet was 2.15 AU from the Sun, with the Rosetta spacecraft approximately 70 km from the nucleus placing it deep inside the comet's coma and allowing us to study its response. The Eastern flank of an interplanetary coronal mass ejection (ICME) also encountered Rosetta on 6 and 7 March. Rosetta Plasma Consortium data indicate increases in ionization rates, and cometary water group pickup ions exceeding 1 keV. Increased charge exchange reactions between solar wind ions and cometary neutrals also indicate increased upstream neutral populations consistent with enhanced SEP induced surface activity. In addition, the most intense parts of the event coincide with observations interpreted as an infant cometary bow shock, indicating that the SEPs may have enhanced the formation and/or intensified the observations. These solar transient events may also have pushed the cometopause closer to the nucleus. We track and discuss characteristics of the SEP event using remote observations by SOHO, WIND, and GOES at the Sun, in situ measurements at Solar Terrestrial Relations Observatory Ahead, Mars and Rosetta, and ENLIL modeling. Based on its relatively prolonged duration, gradual and anisotropic nature, and broad angular spread in the heliosphere, we determine the main particle acceleration source to be a distant ICME which emerged from the Sun on 6 March 2015 and was detected locally in the Martian ionosphere but was never encountered by 67P directly. The ICME's shock produced SEPs for several days which traveled to the in situ observation sites via magnetic field line connections.

2.
J Microsc ; 263(1): 20-33, 2016 07.
Article in English | MEDLINE | ID: mdl-26695385

ABSTRACT

Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 µm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments.

3.
J Microsc ; 232(2): 212-24, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19017220

ABSTRACT

The surface characteristics of a large set of commercial lightweight coated paper grades are explored. The quantification of the 3D structure is revealed by atomic force microscopy, laser profilometry and X-ray microtomography. This comprehensive study demonstrates the suitability of different and modern methods for assessing critical coating layer properties, thus identifying the right tools for specific structural analyses. Based on the assessment of the top and bottom surfaces of 25 commercial lightweight coated samples, three main conclusions can be drawn: (1) the facet orientation polar angle is a function of roughness, (2) skewness did not describe the surface details affecting the gloss of the commercial lightweight coated samples assessed in this study and (3) surface roughness at wavelengths below approximately 1.0 microm does not affect the paper gloss significantly. This is important knowledge for the understanding of lightweight coated paper surface structure and its properties.

4.
Eur Phys J E Soft Matter ; 22(1): 61-6, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17318292

ABSTRACT

Above a small length scale, the distribution of local elastic energies in a material under an external load is typically Gaussian, and the dependence of the average elastic energy on strain defines the stiffness of the material. Some particular materials, such as granular packings, suspensions at the jamming transition, crumpled sheets and dense cellular aggregates, display under compression an exponential distribution of elastic energies, but also in this case the elastic properties are well defined. We demonstrate here that networks of fibres, which form uncorrelated non-fractal structures, have under external load a scale invariant distribution of elastic energy (epsilon) at the fibre-fibre contacts proportional to 1/epsilon. This distribution is much broader than any other distribution observed before for elastic energies in a material. We show that for small compressions it holds over 10 orders of magnitude in epsilon. In such a material a few 'hot spots' carry most of the elastic load. Consequently, these materials are highly susceptible to local irreversible deformations, and are thereby extremely efficient for damping vibrations.


Subject(s)
Biophysics/methods , Animals , Computer Simulation , Elasticity , Materials Testing , Models, Theoretical , Normal Distribution , Thermodynamics , Tomography, X-Ray Computed , Wool
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 1): 051103, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14682784

ABSTRACT

We report experimental results for the behavior of slow-combustion fronts in the presence of a columnar defect with enhanced or reduced driving, and compare them with those of mean-field theory. We also compare them with simulation results for an analogous problem of driven flow of particles with hard-core repulsion (ASEP) and a single defect bond with a different hopping probability. The difference in the shape of the front profiles for enhanced vs reduced driving in the defect clearly demonstrates the existence of a Kardar-Parisi-Zhang-type nonlinear term in the effective evolution equation for the slow-combustion fronts. We also find that slow-combustion fronts display a faceted form for large enough enhanced driving, and that there is a corresponding increase then in the average front speed. This increase in the average front speed disappears at a nonzero enhanced driving in agreement with the simulated behavior of the ASEP model.

6.
Phys Rev Lett ; 90(2): 024501, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12570549

ABSTRACT

The spatial and temporal persistence, or first-return distributions are measured for slow-combustion fronts in paper. The stationary temporal and (perhaps less convincingly) spatial persistence exponents agree with the predictions based on the front dynamics, which asymptotically belongs to the Kardar-Parisi-Zhang universality class. The stationary short-range and the transient behavior of the fronts are non-Markovian, and the observed persistence properties thus do not agree with the predictions based on Markovian theory. This deviation is a consequence of additional time and length scales, related to the crossovers to the asymptotic coarse-grained behavior.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(3 Pt 2): 036101, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11580388

ABSTRACT

Results of experiments on the dynamics and kinetic roughening of one-dimensional slow-combustion fronts in three grades of paper are reported. Extensive averaging of the data allows a detailed analysis of the spatial and temporal development of the interface fluctuations. The asymptotic scaling properties, on long length and time scales, are well described by the Kardar-Parisi-Zhang (KPZ) equation with short-range, uncorrelated noise. To obtain a more detailed picture of the strong-coupling fixed point, characteristic of the KPZ universality class, universal amplitude ratios, and the universal coupling constant are computed from the data and found to be in good agreement with theory. Below the spatial and temporal scales at which a crossover takes place to the standard KPZ behavior, the fronts display higher apparent exponents and apparent multiscaling. In this regime the interface velocities are spatially and temporally correlated, and the distribution of the magnitudes of the effective noise has a power-law tail. The relation of the observed short-range behavior and the noise as determined from the local velocity fluctuations is discussed.

8.
Phys Rev Lett ; 84(9): 1946-9, 2000 Feb 28.
Article in English | MEDLINE | ID: mdl-11017667

ABSTRACT

We present results of high resolution experiments on kinetic roughening of slow combustion fronts in paper, focusing on short length and time scales. Using three different grades of paper, we find that the combustion fronts show apparent spatial and temporal multiscaling at short scales. The scaling exponents decrease as a function of the order of the corresponding correlation functions. The noise affecting the fronts reveals short range temporal and spatial correlations, and non-Gaussian noise amplitudes. Our results imply that the overall behavior of slow combustion fronts cannot be explained by standard theories of kinetic roughening.

SELECTION OF CITATIONS
SEARCH DETAIL
...