Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2308610, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38128011

ABSTRACT

A robust hydrogen evolution is demonstrated from Au25 (PET)18 ]- nanoclusters (PET = 2-phenylethanethiol) grafted with minimal platinum atoms. The fabrication involves an electrochemical activation of nanoclusters by partial removal of thiols, without affecting the metallic core, which exposes Au-sites adsorbed with hydrogen and enables an electroless grafting of platinum. The exposed Au-sites feature the (111)-facet of the fcc-Au25 nanoclusters as assessed through lead underpotential deposition. The electrochemically activated nanoclusters (without Pt loading) show better electrocatalytic reactivity toward hydrogen evolution reaction than the pristine nanoclusters in an acidic medium. The platinum-grafted nanocluster outperformed with a lower overpotential of 0.117 V vs RHE (RHE = Reversible Hydrogen Electrode) compared to electrochemically activated nanoclusters (0.353 V vs RHE ) at 10 mA cm-2 and is comparable with commercial Pt/C. The electrochemically activated nanoclusters show better reactivity at higher current density owing to the ease of hydrogen release from the active sites. The modified nanoclusters show unique supramolecular self-assembly characteristics as observed in electron microscopy and tomography due to the possible metallophilic interactions. These results suggest that the post-surface modification of nanoclusters will be an ideal tool to address the sustainable production of green hydrogen.

2.
ACS Appl Mater Interfaces ; 13(8): 10583-10593, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33591728

ABSTRACT

Despite tremendous progress in the field of fluorescence-based anticounterfeiting, the advanced anticounterfeiting techniques are still posing challenges all over the world due to their cost and reliability. Recently, light-emitting atomically precise nanoclusters have emerged as attractive building blocks because of their well-defined structure, function, and stable photoluminescence. Herein, we report the room temperature fabrication of a stable, flexible, nontoxic, and low-cost precision nanocluster-based luminescent ink for the stencil printing of an optically unclonable security label. Nanocluster-based printing ink shows brilliant photoluminescence owing to its extended C-H···π/π···π interactions. Spectroscopic and microscopic investigations show that intercalated nanoclusters in the printed security labels are highly stable as their optical features and molecular compositions are unaffected. The exceptional mechanical, thermal, photo, and aqueous stabilities of the printed security labels endorse to demonstrate the printing and smartphone-based electronic reading of the quick response code on a currency. Finally, confidential information protection and decryption under a precise window of light have been achieved by adopting the optical contrast illusion. The overall cost of the security label is found to be approximately 0.013 USD per stamp.

3.
Small ; 17(27): e2005718, 2021 07.
Article in English | MEDLINE | ID: mdl-33491918

ABSTRACT

Ligand protected noble metal nanoparticles are excellent building blocks for colloidal self-assembly. Metal nanoparticle self-assembly offers routes for a wide range of multifunctional nanomaterials with enhanced optoelectronic properties. The emergence of atomically precise monolayer thiol-protected noble metal nanoclusters has overcome numerous challenges such as uncontrolled aggregation, polydispersity, and directionalities faced in plasmonic nanoparticle self-assemblies. Because of their well-defined molecular compositions, enhanced stability, and diverse surface functionalities, nanoclusters offer an excellent platform for developing colloidal superstructures via the self-assembly driven by surface ligands and metal cores. More importantly, recent reports have also revealed the hierarchical structural complexity of several nanoclusters. In this review, the formulation and periodic self-assembly of different noble metal nanoclusters are focused upon. Further, self-assembly induced amplification of physicochemical properties, and their potential applications in molecular recognition, sensing, gas storage, device fabrication, bioimaging, therapeutics, and catalysis are discussed. The topics covered in this review are extensively associated with state-of-the-art achievements in the field of precision noble metal nanoclusters.


Subject(s)
Metal Nanoparticles , Nanostructures , Ligands , Metals , Sulfhydryl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...