Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 31(8): 6013-6020, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33459854

ABSTRACT

OBJECTIVES: To assess the feasibility and reliability of the use of artificial intelligence post-processing to calculate the RV:LV diameter ratio on computed tomography pulmonary angiography (CTPA) and to investigate its prognostic value in patients with acute PE. METHODS: Single-centre, retrospective study of 101 consecutive patients with CTPA-proven acute PE. RV and LV volumes were segmented on 1-mm contrast-enhanced axial slices and maximal ventricular diameters were derived for RV:LV ratio using automated post-processing software (IMBIO LLC, USA) and compared to manual analysis in two observers, via intraclass coefficient correlation analysis. Each CTPA report was analysed for mention of the RV:LV ratio and compared to the automated RV:LV ratio. Thirty-day all-cause mortality post-CTPA was recorded. RESULTS: Automated RV:LV analysis was feasible in 87% (n = 88). RV:LV ratios ranged from 0.67 to 2.43, with 64% (n = 65) > 1.0. There was very strong agreement between manual and automated RV:LV ratios (ICC = 0.83, 0.77-0.88). The use of automated analysis led to a change in risk stratification in 45% of patients (n = 40). The AUC of the automated measurement for the prediction of all-cause 30-day mortality was 0.77 (95% CI: 0.62-0.99). CONCLUSION: The RV:LV ratio on CTPA can be reliably measured automatically in the majority of real-world cases of acute PE, with perfect reproducibility. The routine use of this automated analysis in clinical practice would add important prognostic information in patients with acute PE. KEY POINTS: • Automated calculation of the right ventricle to left ventricle ratio was feasible in the majority of patients and demonstrated perfect intraobserver variability. • Automated analysis would have added important prognostic information and altered risk stratification in the majority of patients. • The optimal cut-off value for the automated right ventricle to left ventricle ratio was 1.18, with a sensitivity of 100% and specificity of 54% for the prediction of 30-day mortality.


Subject(s)
Pulmonary Embolism , Ventricular Dysfunction, Right , Acute Disease , Artificial Intelligence , Heart Ventricles/diagnostic imaging , Humans , Pulmonary Embolism/diagnostic imaging , Reproducibility of Results , Retrospective Studies , Risk Assessment , Tomography, X-Ray Computed , Ventricular Dysfunction, Right/diagnostic imaging
2.
Am J Clin Nutr ; 104(6): 1545-1553, 2016 12.
Article in English | MEDLINE | ID: mdl-27806971

ABSTRACT

BACKGROUND: Intermittent severe energy restriction (SER) can induce substantial weight loss, but the appetite regulatory responses to SER are unknown and may dictate long-term dietary adherence. OBJECTIVE: We determined the effect of 24-h SER on appetite regulation, metabolism, and energy intake. DESIGN: Eighteen lean men and women completed two 3-d trials in randomized, counterbalanced order. On day 1 subjects consumed standardized diets containing 100% (mean ± SD: 9.3 ± 1.3 MJ; energy balance) or 25% [2.3 ± 0.3 MJ; energy restriction (ER)] of energy requirements. On day 2, a standardized breakfast was consumed, with plasma concentrations of acylated ghrelin, glucagon-like peptide 1, insulin, glucose, and nonesterified fatty acids determined for 4 h. Ad libitum energy intake was assessed at lunch and dinner with subjective appetite and resting metabolism assessed throughout. On day 3, ad libitum energy intake was assessed at breakfast and by weighed food records. RESULTS: Energy intake was 7% greater on day 2 (P < 0.05) during ER but not significantly different on day 3 (P = 0.557). Subjective appetite was greater during ER on the morning of day 2 (P < 0.05) but was not significantly different thereafter (P > 0.145). During ER, postprandial concentrations of acylated ghrelin were lower (P < 0.05), whereas glucose (P < 0.05) and nonesterified fatty acids (P < 0.0001) were higher. Postprandial glucagon-like peptide 17-36 (P = 0.784) and insulin (P = 0.06) concentrations were not significantly different between trials. Energy expenditure was lower during ER in the morning (P < 0.01). CONCLUSIONS: In lean young adults, 24-h SER transiently elevated subjective appetite and marginally increased energy intake, but hormonal appetite markers did not respond in a manner indicative of hyperphagia. These results suggest that intermittent SER might be useful to attenuate energy intake and control body weight in this population. This trial was registered at www.clinicaltrials.gov.uk as NCT02696772.


Subject(s)
Appetite Regulation , Caloric Restriction , Energy Intake , Acylation , Adult , Appetite , Blood Glucose/metabolism , Body Mass Index , Body Weight , Breakfast , Cross-Over Studies , Energy Metabolism , Fatty Acids, Nonesterified/blood , Female , Ghrelin/blood , Glucagon-Like Peptide 1/blood , Humans , Insulin/blood , Male , Meals , Nutritional Requirements , Peptide Fragments/blood , Postprandial Period , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...