Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Rep ; 17(1): 62, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35719836

ABSTRACT

Severe UV exposure induces skin inflammation, causing erythema. Lycii Fructus (Lycium barbarum and Lycium chinense) is a potential antioxidant agent with a high content of polyphenols, including rutin and chlorogenic acid. This study examined the effects of Lycii Fructus extract (LFE) on UVB-induced skin erythema in humans. Healthy volunteers were randomly assigned to one of two groups and received UVB irradiation at 1.5 minimal erythemal dose (MED) on day 0 at three designated sites on their backs, and the skin color was measured until day 7. After an 8-week treatment with LFE (900 mg/day) or placebo, UVB irradiation (l.5 MED) was applied again at different sites on day 63. Skin color was continuously measured in each group until day 69. LFE tablet administration for 8 weeks significantly inhibited UVB-induced erythema formation and increased the MED by 13%. Erythema formation peaked on the first day after UVB irradiation, but gradually dissipated over the next several days. LFE tended to accelerate erythema disappearance. To determine the polyphenol responsible for the protection against UVB-induced skin damage, the effects of LFE-derived polyphenols and their metabolites on UVB-induced cytotoxicity were examined in vitro. The major intestinal metabolite of rutin and LFE significantly attenuated phototoxicity and in human keratinocyte HaCaT cells. Quercetin enhanced intracellular glutathione levels in HaCaT cells, even though LFE did not increase it. Together, the results showed that LFE inhibited erythema formation and accelerated erythema dissipation, possibly through its direct antioxidative action.

2.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163684

ABSTRACT

Aldehyde dehydrogenases (ALDHs) are the major enzyme superfamily for the aldehyde metabolism. Since the ALDH polymorphism leads to the accumulation of acetaldehyde, we considered that the enhancement of the liver ALDH activity by certain food ingredients could help prevent alcohol-induced chronic diseases. Here, we evaluated the modulating effects of 3-hydroxyphenylacetic acid (OPAC), the major metabolite of quercetin glycosides, on the ALDH activity and acetaldehyde-induced cytotoxicity in the cultured cell models. OPAC significantly enhanced the total ALDH activity not only in mouse hepatoma Hepa1c1c7 cells, but also in human hepatoma HepG2 cells. OPAC significantly increased not only the nuclear level of aryl hydrocarbon receptor (AhR), but also the AhR-dependent reporter gene expression, though not the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent one. The pretreatment of OPAC at the concentration required for the ALDH upregulation completely inhibited the acetaldehyde-induced cytotoxicity. Silencing AhR impaired the resistant effect of OPAC against acetaldehyde. These results strongly suggested that OPAC protects the cells from the acetaldehyde-induced cytotoxicity, mainly through the AhR-dependent and Nrf2-independent enhancement of the total ALDH activity. Our findings suggest that OPAC has a protective potential in hepatocyte models and could offer a new preventive possibility of quercetin glycosides for targeting alcohol-induced chronic diseases.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Glycosides/metabolism , Hepatocytes/pathology , Intestines/metabolism , Phenylacetates/pharmacology , Protective Agents/pharmacology , Quercetin/metabolism , Acetaldehyde , Aldehyde Dehydrogenase/genetics , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytoprotection/drug effects , Glycosides/chemistry , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Phenylacetates/chemistry , Quercetin/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/metabolism
3.
Sci Rep ; 9(1): 8866, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222108

ABSTRACT

Benzyl isothiocyanate (BITC) is a naturally-occurring isothiocyanate derived from cruciferous vegetables. BITC has been reported to inhibit the proliferation of various cancer cells, which is believed to be important for the inhibition of tumorigenesis. However, the detailed mechanisms of action remain unclear. In this study, we employed a budding yeast Saccharomyces cerevisiae as a model organism for screening. Twelve genes including MTW1 were identified as the overexpression suppressors for the antiproliferative effect of BITC using the genome-wide multi-copy plasmid collection for S. cerevisiae. Overexpression of the kinetochore protein Mtw1 counteracts the antiproliferative effect of BITC in yeast. The inhibitory effect of BITC on the proliferation of human colon cancer HCT-116 cells was consistently suppressed by the overexpression of Mis12, a human orthologue of Mtw1, and enhanced by the knockdown of Mis12. We also found that BITC increased the phosphorylated and ubiquitinated Mis12 level with consequent reduction of Mis12, suggesting that BITC degrades Mis12 through an ubiquitin-proteasome system. Furthermore, cell cycle analysis showed that the change in the Mis12 level affected the cell cycle distribution and the sensitivity to the BITC-induced apoptosis. These results provide evidence that BITC suppresses cell proliferation through the post-transcriptional regulation of the kinetochore protein Mis12.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/drug effects , Isothiocyanates/pharmacology , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Saccharomyces cerevisiae/metabolism
4.
Biosci Biotechnol Biochem ; 82(10): 1812-1820, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29912670

ABSTRACT

Lycii Fructus is the dried ripe fruits of Lycium chinense and L. barbarum, which has long been used as a traditional food material in East Asia. The purpose of this study was to investigate the role of the indirect antioxidative action in the Lycii fructus extract (LFE)-induced cytoprotective effect in vitro. LFE significantly enhanced the expression of the drug-metabolizing enzyme genes and intracellular glutathione level in mouse hepatoma Hepa1c1c7 cells. LFE stimulated the nuclear translocation of aryl hydrocarbon receptor as well as nuclear factor (erythroid-derived 2)-like 2. The pretreatment of LFE for 24 h, but not for 30 min, completely inhibited the cytotoxic effect of hydrogen peroxide. Furthermore, chlorogenic acid, one of the main constituents of LFE, showed cytoprotection against hydrogen peroxide with the enhanced phase 2 enzyme gene expression. These results suggested that LFE exhibits a cytoprotective effect, possibly through the enhancement of the antioxidant gene expression. ABBREVIATIONS: LFE: Lycii Fructus extract; GSH: glutathione; NQO1: NAD(P)H:quinone oxidoreductase 1; HO-1: heme oxygenase-1; GCLC: glutamate-cysteine ligase, catalytic subunit; xCT: a component of cysteine/glutamate antiporter (cystine/glutamate exchanger); CYP1A1: cytochrome P450 1A1; GSH: glutathione; AhR: aryl hydrocarbon receptor; Nrf2: nuclear factor (erythroid-derived 2)-like 2; CGA: chlorogenic acid; RT-PCR: reverse transcription-polymerase chain reaction; DTT: dithiothreitol; PMSF: phenylmethylsulfonyl fluoride; ARE: antioxidant response element; XRE: xenobiotic responsive element.


Subject(s)
Antioxidants/pharmacology , Cell Survival/drug effects , Hydrogen Peroxide/toxicity , Lycium/chemistry , Plant Extracts/pharmacology , Animals , Blotting, Western , Cell Line, Tumor , Gene Expression/drug effects , Glutathione/metabolism , Mice , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...