Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Appl Spectrosc ; 77(9): 1053-1063, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37350765

ABSTRACT

We recently described a lightweight, low-power, waterproof filter fluorometer using a 180° backscatter geometry for chlorophyll-a (chl-a) detection. Before it was constructed it was modeled to ensure it would have satisfactory performance. This manuscript repeats the modeling process that allows the calibration slope and detection limit for a fluorescent analyte in water to be estimated from system component performance and conventional spectrofluorometry alone. These values are validated by comparison to the experimental result of calibration from the completed instrument. Our model yields a calibration slope of 8.22 mV-L/µg for dissolved chl-a, consistent with the experimentally measured slope of 8.21 mV-L/µg. The detection limit modeled from this slope and an estimate of the baseline noise of the instrument was 0.15 µg/L chl-a, while the measured detection limit using real blank samples was 0.18 µg/L, in 0.1 s differential measurements.

2.
Appl Spectrosc ; 77(1): 94-105, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36065908

ABSTRACT

We describe a waterproof, lightweight (1.3 kg), low-power (∼1.1 W average power) fluorometer operating on 5 V direct current deployed on a small uncrewed aircraft system (sUAS) to measure chlorophyll and used for triggering environmental water sampling by the sUAS. The fluorometer uses a 450 nm laser modulated at 10 Hz for excitation and a standard photodiode and transimpedance amplifier for the detection of fluorescence. Additional detectors are available for measuring laser intensity and light scattering. Control of the fluorometer and communication between the fluorometer and the Raspberry Pi 4B computer controlling the sampler were provided by an Arduino microcontroller using the robot operating system (ROS). Calibrations were based on standards of dissolved chlorophyll extracted from Chlorella powder (a widely available dietary supplement). The detection limit for chlorophyll from these calibrations was found to be 0.2 µg per liter of water for a single 0.1 s differential measurement. The detection limit decreases with the square root of the integration time as expected. Detection limits increase by a factor of two to three when mounted in the sUAS due to electrical noise; sUAS acoustic noise and vibration do not appear to contribute significantly.


Subject(s)
Chlorella , Chlorophyll , Chlorophyll A , Light , Water
3.
Appl Spectrosc ; 77(2): 220-224, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36197285

ABSTRACT

We describe the control and interfacing of a fluorometer designed for aerial drone-based measurements of chlorophyll-a using an Arduino Nano 33 BLE Sense board. This 64 MHz controller board provided suitable resolution and speed for analog-to-digital (ADC) conversion, processed data, handled communications via the Robot Operating System (ROS) and included a variety of built-in sensors that were used to monitor the fluorometer for vibration, acoustic noise, water leaks and overheating. The fluorometer was integrated into a small Uncrewed Aircraft System (sUAS) for automated water sampling through a Raspberry Pi master computer using the ROS. The average power consumption was 1.1 W. A signal standard deviation of 334 µV was achieved for the fluorescence blank measurement, mainly determined by the input noise equivalent power of the transimpedance amplifier. An ADC precision of 130 µV for 10 Hz chopped measurements was achieved for signals in the input range 0-600 mV.

4.
Sci Justice ; 61(5): 603-616, 2021 09.
Article in English | MEDLINE | ID: mdl-34482941

ABSTRACT

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to analyze four types of forensically relevant fabrics coated with varying dilutions of blood. The blood was applied in two manners, dip coating with a smooth and uniform layer and drip coating with droplets from pipettes. Spectra of neat and dip coated fabrics were acquired using controlled orientations, and these were compared to spectra collected on samples with random orientations. The improved reproducibility seen in visual inspection of the spectra is confirmed by principal component and linear discriminant projections of the spectra, as well as by statistical hypothesis testing. Principal component regression (PCR), using the regions of the IR spectra associated with the amide A/B, I, II, and III vibrational bands (3500-2800, 1650, 1540, and 1350 cm-1), was employed on the more uniform dip coated spectra to estimate limits of detection for blood on two of the four fabrics - acrylic and nylon. These results demonstrate that detection limits for blood on fabrics can be decreased significantly by controlling for the orientation and face of the fabric samples while collecting spectra. Limits of detection for acrylic and nylon were found to be 196 × and 227 × diluted blood, respectively.


Subject(s)
Nylons , Fourier Analysis , Humans , Limit of Detection , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods
5.
J Phys Chem Lett ; 11(19): 8138-8144, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32894952

ABSTRACT

Raman spectroscopy was used to establish direct evidence of heterometallic metal centers in a metal-organic framework (MOF). The Cu3(BTC)2 MOF HKUST-1 (BTC3- = benzenetricarboxylate) was transmetalated by heating it in a solution of RhCl3 to substitute Rh2+ ions for Cu2+ ions in the dinuclear paddlewheel nodes of the framework. In addition to the Cu-Cu and Rh-Rh stretching modes, Raman spectra of (CuxRh1-x)3(BTC)2 show the Cu-Rh stretching mode, indicating that mixed-metal Cu-Rh nodes are formed after transmetalation. Density functional theory studies confirmed the assignment of a Raman peak at 285 cm-1 to the Cu-Rh stretching vibration. Electron paramagnetic resonance spectroscopy experiments further supported the conclusion that Rh2+ ions are substituted into the paddlewheel nodes of Cu3(BTC)2 to form an isostructural heterometallic MOF, and electron microscopy studies showed that Rh and Cu are homogeneously distributed in (CuxRh1-x)3(BTC)2 on the nanoscale.

6.
Anal Chem ; 91(24): 15617-15624, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31660727

ABSTRACT

Multivariate optical computing (MOC) is a compressed sensing technique enabling the measurement of analytes in a complex interfering mixture under harsh conditions. In this work, we describe the design, modeling, fabrication, and validation of a sensor for the measurement of dissolved methane in petroleum crude oil at high and variable combinations of pressure (up to 82.727 MPa) and temperature (up to 121.1 °C). Both laboratory and field validation results are presented, with five separate MOC sensors yielding a RMS error of 0.0089 g/cm3 methane in high pressure/high temperature laboratory and field samples compared to 0.0086 g/cm3 methane for a room temperature laboratory Fourier transform infrared (FTIR) spectrometer using partial least-squares (PLS) regression models.

7.
Sensors (Basel) ; 19(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744066

ABSTRACT

Multivariate optical computing (MOC) is a compressed sensing technique with the ability to provide accurate spectroscopic compositional analysis in a variety of different applications to multiple industries. Indeed, recent developments have demonstrated the successful deployment of MOC sensors in downhole/well-logging environments to interrogate the composition of hydrocarbon and other chemical constituents in oil and gas reservoirs. However, new challenges have necessitated sensors that operate at high temperatures and pressures (up to 230 °C and 138 MPa) as well as even smaller areas that require the miniaturization of their physical footprint. To this end, this paper details the design, fabrication, and testing of a novel miniature-sized MOC sensor suited for harsh environments. A micrometer-sized optical element provides the active spectroscopic analysis. The resulting MOC sensor is no larger than two standard AAA batteries yet is capable of operating in high temperature and pressure conditions while providing accurate spectroscopic compositional analysis comparable to a laboratory Fourier transform infrared spectrometer.

8.
Appl Spectrosc ; 73(3): 304-312, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30345799

ABSTRACT

Phytoplankton play a vital role as primary producers in aquatic ecosystems. One common approach to classifying phytoplankton is fluorescence excitation spectroscopy, which leverages the variation in types and concentrations of pigments among different phytoplankton taxonomic groups. Here, we used a fluorescence imaging photometer to measure excitation ratios ("signatures") of single cells and bulk cultures of seven differently pigmented phytoplankton species as they progressed from nitrogen N-replete to N-depleted conditions. Our objective was to determine whether N depletion alters the fluorescence excitation signature of each species and, if so, how quickly they recover when N (as nitrate) was resupplied, because these factors affect our ability to classify the species correctly. Of the seven species studied, only Proteomonas sulcata, a marine cryptophyte, showed measurable changes in single-cell fluorescence excitation ratios and bulk fluorescence excitation spectra. These changes were likely due to decreases in the cellular concentration of phycoerythrin, a N-rich pigment, as N became scarce. Within 3 h of resupply of N, fluorescence signatures began returning to pre-depletion values and were indistinguishable from N-replete cells by 80 h after resupply. These data suggest that our classification approach is robust for non-PE containing phytoplankton. PE-containing phytoplankton might exhibit systematic changes in their signatures depending on their level of N depletion, but this could be detected and the phytoplankton re-classified following a few hours of incubation in N replete conditions.


Subject(s)
Fluorescence , Nitrogen/metabolism , Phytoplankton/chemistry , Single-Cell Analysis , Spectrometry, Fluorescence/methods
9.
Appl Spectrosc ; 72(3): 442-462, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29069908

ABSTRACT

An all-pairs method is used to analyze phytoplankton fluorescence excitation spectra. An initial set of nine phytoplankton species is analyzed in pairwise fashion to select two optical filter sets, and then the two filter sets are used to explore variations among a total of 31 species in a single-cell fluorescence imaging photometer. Results are presented in terms of pair analyses; we report that 411 of the 465 possible pairings of the larger group of 31 species can be distinguished using the initial nine-species-based selection of optical filters. A bootstrap analysis based on the larger data set shows that the distribution of possible pair separation results based on a randomly selected nine-species initial calibration set is strongly peaked in the 410-415 pair separation range, consistent with our experimental result. Further, the result for filter selection using all 31 species is also 411 pair separations; The set of phytoplankton fluorescence excitation spectra is intuitively high in rank due to the number and variety of pigments that contribute to the spectrum. However, the results in this report are consistent with an effective rank as determined by a variety of heuristic and statistical methods in the range of 2-3. These results are reviewed in consideration of how consistent the filter selections are from model to model for the data presented here. We discuss the common observation that rank is generally found to be relatively low even in many seemingly complex circumstances, so that it may be productive to assume a low rank from the beginning. If a low-rank hypothesis is valid, then relatively few samples are needed to explore an experimental space. Under very restricted circumstances for uniformly distributed samples, the minimum number for an initial analysis might be as low as 8-11 random samples for 1-3 factors.

10.
Rev Sci Instrum ; 88(7): 073101, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28764514

ABSTRACT

An instrument is presented that is capable of measuring the optical spectrum (long-wave ultraviolet through short-wave mid-infrared) of fluids under a range of temperature and pressure conditions from ambient pressure up to 138 MPa (20 000 psi) and 422 K (300 °F) using ∼5 ml of fluid. Temperature, pressure, and density are measured in situ in real-time, and composition is varied by adding volatile and nonvolatile components. The stability and accuracy of the conditions are reported for pure ethane, and the effects of temperature and pressure on characteristic regions of the optical spectrum of ethane are illustrated after correction for temperature and pressure effects on the optical cell path length, as well as normalization to the measured density. Molar absorption coefficients and integrated molar absorption coefficients for several vibrational combination bands are presented.

11.
Forensic Sci Int ; 278: 396-403, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28837893

ABSTRACT

The luminol test has been used for over 60 years by forensic investigators for presumptive identification of blood and visualization of blood splatter patterns. Multiple studies have estimated the limit of detection (LD) for bloodstains when luminol is employed, with results ranging from 100× to 5,000,000× dilute. However, these studies typically have not identified and controlled important experimental variables which may affect the luminol LD for bloodstains. Without control of experimental parameters in the laboratory, variables which affect the potential of presumptive bloodstain test methods remain largely unknown, and comparisons required to establish new, more powerful detection methods are simply impossible. We have developed a quantitative method to determine the relationship between the amount of blood present and its reaction with luminol by measuring, under controlled conditions, the resulting chemiluminescent intensity with a video camera, combined with processing of the digital intensity data. The method resulted in an estimated LD for bloodstains on cotton fabric at ∼200,000× diluted blood with a specific luminol formulation. Although luminol is the focus of this study, the experimental protocol used could be modified to study effects of variables using other blood detection reagents.


Subject(s)
Blood Stains , Luminescent Measurements , Luminol , Forensic Medicine/methods , Humans , Indicators and Reagents , Limit of Detection , Software , Video Recording
12.
Appl Spectrosc ; 71(5): 839-846, 2017 May.
Article in English | MEDLINE | ID: mdl-27354403

ABSTRACT

Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).


Subject(s)
Blood Specimen Collection/methods , Forensic Sciences/methods , Spectroscopy, Fourier Transform Infrared/methods , Textiles , Animals , Cotton Fiber , Limit of Detection , Nylons , Rats
13.
Appl Spectrosc ; 71(1): 97-104, 2017 01.
Article in English | MEDLINE | ID: mdl-27821664

ABSTRACT

Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, in which the sample is pressed against an internal reflection element, is a popular technique for rapid IR spectral collection. However, depending on the accessory design, the pressure applied to the sample is not always well controlled. While collecting data from fabrics with heterogeneous coatings, we have observed systematic pressure-dependent changes in spectra that can be eliminated by more reproducible pressure control. We also described a pressure sensor adapted to work with an ATR tower to enable more precise control of pressure during ATR sampling.

14.
Appl Spectrosc ; 70(6): 1044-54, 2016 06.
Article in English | MEDLINE | ID: mdl-27145985

ABSTRACT

Higher-order gap derivatives are sometimes avoided as a preprocessing method for multivariate calibration despite their numerous advantages. One reason that they are avoided is the difficulty in interpreting the complex processed spectra and the regression vectors that arise from common calibration procedures like principal components regression or partial least squares regression. In this report we offer a method of calculating gap derivatives of any order with the aim of retrieving zero-order spectral information via numerical integration. This method is also extended to the integration of the accompanying regression vectors to aid in the interpretation of multivariate calibration models.

15.
Appl Spectrosc ; 69(12): 1511-3, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26555868

ABSTRACT

A major type of infrared camera is sensitive to wavelengths in the 8-14 µm band and is mainly used for thermal imaging. Such cameras can also be used for general broadband infrared reflectance imaging when provided with a suitable light source. We report the design and properties of an infrared lamp using a heated alumina emitter suitable for active thermal infrared imaging, as well as comparisons to existing commercial light sources for this purpose. We find that the alumina lamp is a broadband non-blackbody source with a lower out-of-band emission intensity and therefore higher electrical efficiency for this application than existing commercial sources.

16.
Anal Chem ; 87(18): 9265-72, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26275025

ABSTRACT

Audio recordings are a significant component of the world's modern cultural history and are retained for future generations in libraries, archives, and museums. The vast majority of tapes contain polyester-urethane as the magnetic particle binder, the degradation of which threatens the playability and integrity of these often unique recordings. Magnetic tapes with stored historical data are degrading and need to be identified prior to digitization and/or preservation. We demonstrate the successful differentiation of playable and nonplayable quarter-inch audio tapes, allowing the minimally invasive triage of tape collections. Without such a method, recordings are put at risk during playback, which is the current method for identifying degraded tapes. A total of 133 quarter-inch audio tapes were analyzed by attenuated total reflectance Fourier transform-infrared spectroscopy (ATR FT-IR). Classification of IR spectra in regards to tape playability was accomplished using principal component analysis (PCA) followed by quadratic discriminant analysis (QDA) and K-means cluster analysis. The first principal component suggests intensities at the following wavenumbers to be representative of nonplayable tapes: 1730 cm(-1), 1700 cm(-1), 1255 cm(-1), and 1140 cm(-1). QDA and cluster analysis both successfully identified 93.78% of nonplayable tapes in the calibration set and 92.31% of nonplayable tapes in the test set. This application of IR spectra assessed with multivariate statistical analysis offers a path to greatly improve efficiency of audio tape preservation. This rapid, minimally invasive technique shows potential to replace the manual playback test, a potentially destructive technique, ultimately allowing the safe preservation of culturally valuable content.

17.
Anal Chem ; 87(17): 8740-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26226542

ABSTRACT

Detection limits (DL) for blood on four fabric types were estimated for calibrations derived using partial least squares regression applied to infrared (IR) diffuse reflection spectra. Samples were prepared by dip-coating acrylic, cotton, nylon, and polyester fabrics from solutions of diluted rat blood. While DLs often appear in terms of dilution factor in the forensic community, mass percentage, coverage (mass per unit area), or film thickness are often more relevant when comparing experimental methods. These alternate DL units are related to one another and presented here. The best IR diffuse reflection DLs for blood on acrylic and cotton fabrics were in the mid-IR spectral window corresponding to the protein Amide I/II absorption bands. These DLs were dilution by a factor of 2300 (0.019% w/w blood solids) for acrylic and a factor of 610 (0.055% w/w blood solids) for cotton. The best DL for blood on polyester was found in the mid-IR spectral window corresponding to the protein Amide A absorption band at dilution by a factor of 900 (0.034% w/w blood solids). Because of the similarity between the IR spectra of blood solids and nylon fabrics, no satisfactory IR DLs were determined for the calibration of blood on nylon. We compare our values to DLs reported for blood detection using the standard luminol method. The most commonly reported luminol DLs are of the order of 1000-fold dilution, which we estimate are a factor of 2-7 lower than our reported IR DLs on a coverage basis.


Subject(s)
Blood Chemical Analysis/methods , Spectrophotometry, Infrared , Textiles , Acrylates/chemistry , Blood Chemical Analysis/standards , Cotton Fiber , Limit of Detection , Multivariate Analysis , Polyesters/chemistry
18.
Appl Spectrosc ; 69(6): 733-48, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25955752

ABSTRACT

Derivatives are common preprocessing tools, typically implemented as Savitzky-Golay (SG) smoothing derivatives. This work discusses the implementation and optimization of fourth-order gap derivatives (GDs) as an alternative to SG derivatives for processing infrared spectra before multivariate calibration. Gap derivatives approximate the analytical derivative by calculating finite differences of spectra without curve fitting. Gap derivatives offer an advantage of tunability for spectral data as the distance (gap) over which this finite difference is calculated can be varied. Gap selection is a compromise between signal attenuation, noise amplification, and spectral resolution. A method and discussion of the importance of fourth derivative gap selections are presented as well as a comparison to SG preprocessing and lower-order GDs in the context of multivariate calibration. In most cases, we found that optimized GDs led to calibration models performing comparably to or better than SG derivatives, and that optimized fourth-order GDs behaved similarly to matched filters.

19.
Analyst ; 140(5): 1578-89, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25599099

ABSTRACT

Our laboratories have recently developed a flow-through imaging photometer to characterize and classify fluorescent particles between 3 and 47 µm in size. The wide aperture of the objective lens (0.7 NA) required for measuring spectral fluorescence of single particles restricts the depth of field, such that a large sample volume results in many particles that are out of focus. Here, we describe numerical methods for determining the size of these objects, regardless of their distance from the focal plane, using image processing and multivariate calibration. An intensity profile is extracted from the images and is used as the input for a variety of calibration methods, including partial least squares, neural networks, and support vector machines. The capabilities of these methods are examined to establish the best method for particle sizing that is independent of focus. We found that support vector machines provided the best results, with size estimation error of ±3.1 µm.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Microspheres , Multivariate Analysis , Particle Size , Support Vector Machine , Calibration , Fluorescence
20.
Appl Spectrosc ; 67(6): 620-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23735247

ABSTRACT

Phytoplankton are single-celled, photosynthetic algae and cyanobacteria found in all aquatic environments. Differential pigmentation between phytoplankton taxa allows use of fluorescence excitation spectroscopy for discrimination and classification. For this work, we applied multivariate optical computing (MOC) to emulate linear discriminant vectors of phytoplankton fluorescence excitation spectra by using a simple filter-fluorometer arrangement. We grew nutrient-replete cultures of three differently pigmented species: the coccolithophore Emiliania huxleyi, the diatom Thalassiosira pseudonana, and the cyanobacterium Synechococcus sp. Linear discriminant analysis (LDA) was used to determine a suitable set of linear discriminant functions for classification of these species over an optimal wavelength range. Multivariate optical elements (MOEs) were then designed to predict the linear discriminant scores for the same calibration spectra. The theoretical performance specifications of these MOEs are described.


Subject(s)
Models, Theoretical , Optics and Photonics/methods , Phytoplankton/chemistry , Phytoplankton/classification , Signal Processing, Computer-Assisted , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Algorithms , Discriminant Analysis , Haptophyta/chemistry , Haptophyta/classification , Stramenopiles/chemistry , Stramenopiles/classification , Synechococcus/chemistry , Synechococcus/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...