Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Epilepsia ; 65(7): 2041-2053, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38687176

ABSTRACT

OBJECTIVE: Postsurgical seizure freedom in drug-resistant epilepsy (DRE) patients varies from 30% to 80%, implying that in many cases the current approaches fail to fully map the epileptogenic zone (EZ). We aimed to advance a novel approach to better characterize epileptogenicity and investigate whether the EZ encompasses a broader epileptogenic network (EpiNet) beyond the seizure zone (SZ) that exhibits seizure activity. METHODS: We first used computational modeling to test putative complex systems-driven and systems neuroscience-driven mechanistic biomarkers for epileptogenicity. We then used these biomarkers to extract features from resting-state stereoelectroencephalograms recorded from DRE patients and trained supervised classifiers to localize the SZ against gold standard clinical localization. To further explore the prevalence of pathological features in an extended brain network outside of the clinically identified SZ, we also used unsupervised classification. RESULTS: Supervised SZ classification trained on individual features achieved accuracies of .6-.7 area under the receiver operating characteristic curve (AUC). Combining all criticality and synchrony features further improved the AUC to .85. Unsupervised classification discovered an EpiNet-like cluster of brain regions, in which 51% of brain regions were outside of the SZ. Brain regions in the EpiNet-like cluster engaged in interareal hypersynchrony and locally exhibited high-amplitude bistability and excessive inhibition, which was strikingly similar to the high seizure risk regime revealed by our computational modeling. SIGNIFICANCE: The finding that combining biomarkers improves SZ localization accuracy indicates that the novel mechanistic biomarkers for epileptogenicity employed here yield synergistic information. On the other hand, the discovery of SZ-like brain dynamics outside of the clinically defined SZ provides empirical evidence of an extended pathophysiological EpiNet.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Humans , Electroencephalography/methods , Drug Resistant Epilepsy/physiopathology , Male , Female , Biomarkers , Adult , Nerve Net/physiopathology , Brain/physiopathology , Adolescent , Young Adult , Child , Computer Simulation , Brain Mapping/methods
2.
Commun Biol ; 7(1): 405, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570628

ABSTRACT

Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for the direct quantification of rhythmicity. We applied pACF to human intracerebral stereoelectroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.


Subject(s)
Magnetoencephalography , Periodicity , Humans , Magnetoencephalography/methods , Neurons/physiology , Stereotaxic Techniques , Attention/physiology
4.
Behav Res Methods ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424291

ABSTRACT

Fear conditioning, also termed threat conditioning, is a commonly used learning model with clinical relevance. Quantification of threat conditioning in humans often relies on conditioned autonomic responses such as skin conductance responses (SCR), pupil size responses (PSR), heart period responses (HPR), or respiration amplitude responses (RAR), which are usually analyzed separately. Here, we investigate whether inter-individual variability in differential conditioned responses, averaged across acquisition, exhibits a multi-dimensional structure, and the extent to which their linear combination could enhance the precision of inference on whether threat conditioning has occurred. In a mega-analytic approach, we re-analyze nine data sets including 256 individuals, acquired by the group of the last author, using standard routines in the framework of psychophysiological modeling (PsPM). Our analysis revealed systematic differences in effect size between measures across datasets, but no evidence for a multidimensional structure across various combinations of measures. We derive the statistically optimal weights for combining the four measures and subsets thereof, and we provide out-of-sample performance metrics for these weights, accompanied by bias-corrected confidence intervals. We show that to achieve the same statistical power, combining measures allows for a relevant reduction in sample size, which in a common scenario amounts to roughly 24%. To summarize, we demonstrate a one-dimensional structure of threat conditioning measures, systematic differences in effect size between measures, and provide weights for their optimal linear combination in terms of maximal retrodictive validity.

5.
Biomedicines ; 11(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38137436

ABSTRACT

Variations in stress responses between individuals are linked to factors ranging from stress coping styles to the sensitivity of neurotransmitter systems. Many anxiolytic compounds can increase stressor engagement through the modulation of neurotransmitter systems and are used to investigate stress response mechanisms. The effect of such modulation may vary in time depending on concentration or environment, but those effects are hard to dissect because of the slow transition. We investigated the temporal effect of ethanol and found that ethanol-treated individual zebrafish larvae showed altered behavior that is different between drug concentrations and decreases with time. We used an artificial neural network approach with a time-dependent method for analyzing long (90 min) experiments on zebrafish larvae and found that individuals from the 0.5% group begin to show locomotor activity corresponding to the control group starting from the 60th minute. The locomotor activity of individuals from the 2% group after the 80th minute is classified as the activity of individuals from the 1.5% group. Our method shows three clusters of different concentrations in comparison with two clusters, which were obtained with the usage of a statistical approach for analyzing just the speed of fish movements. In addition, we show that such changes are not explained by basic behavior statistics such as speed and are caused by shifts in locomotion patterns.

6.
J Neurosci ; 43(45): 7642-7656, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37816599

ABSTRACT

The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transition. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear. Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dynamics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencephalography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying degrees of bistability in neuronal oscillations from 3 to 200 Hz. In line with our modeling results, the neuronal bistability was positively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epileptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics in a continuum between continuous and discontinuous phase transitions.SIGNIFICANCE STATEMENT In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects, and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.


Subject(s)
Epilepsy , Neocortex , Male , Adult , Female , Humans , Brain/physiology , Electroencephalography/methods , Brain Mapping , Computer Simulation
7.
Nat Commun ; 14(1): 4736, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550300

ABSTRACT

Neuronal oscillations and their synchronization between brain areas are fundamental for healthy brain function. Yet, synchronization levels exhibit large inter-individual variability that is associated with behavioral variability. We test whether individual synchronization levels are predicted by individual brain states along an extended regime of critical-like dynamics - the Griffiths phase (GP). We use computational modelling to assess how synchronization is dependent on brain criticality indexed by long-range temporal correlations (LRTCs). We analyze LRTCs and synchronization of oscillations from resting-state magnetoencephalography and stereo-electroencephalography data. Synchronization and LRTCs are both positively linearly and quadratically correlated among healthy subjects, while in epileptogenic areas they are negatively linearly correlated. These results show that variability in synchronization levels is explained by the individual position along the GP with healthy brain areas operating in its subcritical and epileptogenic areas in its supercritical side. We suggest that the GP is fundamental for brain function allowing individual variability while retaining functional advantages of criticality.


Subject(s)
Brain , Electroencephalography , Humans , Brain/physiology , Electroencephalography/methods , Magnetoencephalography , Brain Mapping , Neurons/physiology
8.
iScience ; 25(9): 104985, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36093050

ABSTRACT

Neuronal oscillations, their inter-areal synchronization, and scale-free dynamics constitute fundamental mechanisms for cognition by regulating communication in neuronal networks. These oscillatory dynamics have large inter-individual variability that is partly heritable. We hypothesized that this variability could be partially explained by genetic polymorphisms in neuromodulatory genes. We recorded resting-state magnetoencephalography (MEG) from 82 healthy participants and investigated whether oscillation dynamics were influenced by genetic polymorphisms in catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met. Both COMT and BDNF polymorphisms influenced local oscillation amplitudes and their long-range temporal correlations (LRTCs), while only BDNF polymorphism affected the strength of large-scale synchronization. Our findings demonstrate that COMT and BDNF genetic polymorphisms contribute to inter-individual variability in neuronal oscillation dynamics. Comparison of these results to computational modeling of near-critical synchronization dynamics further suggested that COMT and BDNF polymorphisms influenced local oscillations by modulating the excitation-inhibition balance according to the brain criticality framework.

9.
ACS Chem Neurosci ; 13(13): 1902-1922, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35671176

ABSTRACT

Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.


Subject(s)
Hallucinogens , Animals , Artificial Intelligence , Behavior, Animal , Hallucinogens/chemistry , Hallucinogens/pharmacology , Phenethylamines/chemistry , Phenethylamines/pharmacology , Zebrafish
10.
Toxics ; 10(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35202255

ABSTRACT

The zebrafish is a promising model species in biomedical research, including neurotoxicology and neuroactive drug screening. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) evokes degeneration of dopaminergic neurons and is commonly used to model Parkinson's disease (PD) in laboratory animals, including zebrafish. However, cognitive phenotypes in MPTP-evoked experimental PD models remain poorly understood. Here, we established an LD50 (292 mg/kg) for intraperitoneal MPTP administration in adult zebrafish, and report impaired spatial working memory (poorer spontaneous alternation in the Y-maze) in a PD model utilizing fish treated with 200 µg of this agent. In addition to conventional behavioral analyses, we also employed artificial intelligence (AI)-based approaches to independently and without bias characterize MPTP effects on zebrafish behavior during the Y-maze test. These analyses yielded a distinct cluster for 200-µg MPTP (vs. other) groups, suggesting that high-dose MPTP produced distinct, computationally detectable patterns of zebrafish swimming. Collectively, these findings support MPTP treatment in adult zebrafish as a late-stage experimental PD model with overt cognitive phenotypes.

11.
Article in English | MEDLINE | ID: mdl-34320403

ABSTRACT

Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in a series of in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.


Subject(s)
Artificial Intelligence/trends , Disease Models, Animal , Drug Development , Locomotion/drug effects , Psychotropic Drugs/pharmacology , Zebrafish/physiology , Algorithms , Animals , Datasets as Topic , Drug Discovery , Neural Networks, Computer
12.
Front Comput Neurosci ; 14: 588224, 2020.
Article in English | MEDLINE | ID: mdl-33551782

ABSTRACT

Cerebral ("brain") organoids are high-fidelity in vitro cellular models of the developing brain, which makes them one of the go-to methods to study isolated processes of tissue organization and its electrophysiological properties, allowing to collect invaluable data for in silico modeling neurodevelopmental processes. Complex computer models of biological systems supplement in vivo and in vitro experimentation and allow researchers to look at things that no laboratory study has access to, due to either technological or ethical limitations. In this paper, we present the Biological Cellular Neural Network Modeling (BCNNM) framework designed for building dynamic spatial models of neural tissue organization and basic stimulus dynamics. The BCNNM uses a convenient predicate description of sequences of biochemical reactions and can be used to run complex models of multi-layer neural network formation from a single initial stem cell. It involves processes such as proliferation of precursor cells and their differentiation into mature cell types, cell migration, axon and dendritic tree formation, axon pathfinding and synaptogenesis. The experiment described in this article demonstrates a creation of an in silico cerebral organoid-like structure, constituted of up to 1 million cells, which differentiate and self-organize into an interconnected system with four layers, where the spatial arrangement of layers and cells are consistent with the values of analogous parameters obtained from research on living tissues. Our in silico organoid contains axons and millions of synapses within and between the layers, and it comprises neurons with high density of connections (more than 10). In sum, the BCNNM is an easy-to-use and powerful framework for simulations of neural tissue development that provides a convenient way to design a variety of tractable in silico experiments.

13.
Prog Brain Res ; 249: 321-325, 2019.
Article in English | MEDLINE | ID: mdl-31325991

ABSTRACT

The pathophysiological model of dystonia proposed that in addition to reduced firing rate in the internal pallidum, changes in the pattern may also play a role in disease manifestation. While common methods for patterns separation depends on arbitrary spiketrain parameters, we considered the new method for neural patterns based on spike density histograms and hierarchical clustering of real datasets. We used the single unit activity recordings from the globus pallidus external (GPe) and the globus pallidus internal (GPi) from 10 cervical dystonia (CD), 7 segmental dystonia (SD) and 8 generalized dystonia (GD) patients undergoing deep brain stimulation surgery. Using novel method, we separated three patterns of activity: burst, burst-like and tonic. Using this separation, we revealed the differences both in firing rate and pattern distribution between dystonia patients. We have shown the suitability of the proposed method for pattern clusterization on real data and assume that further application of this method would facilitate more detailed study of the neural activity in the basal ganglia and the search for neurophysiological biomarkers of movement disorders.


Subject(s)
Dystonic Disorders/physiopathology , Electrophysiological Phenomena , Globus Pallidus/physiopathology , Adult , Cluster Analysis , Electrodes, Implanted , Electroencephalography , Humans , Torticollis/physiopathology
14.
Neurosci Res ; 145: 54-61, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30121284

ABSTRACT

The analysis of neuronal activity in human brain is a complicated task as it meets several limitations, including small sample sizes, dependent variables in the dataset and the short duration of recordings that entangles the analysis procedure. Here, we present the comparative research of neuronal activity in subthalamic nucleus (STN) of 8 Parkinsonian patients undergoing DBS surgery in awake state and under propofol anaesthesia using different statistical approaches. We studied 25 parameters of single unit activity and performed a direct comparison of the parameters between the groups to characterise the changes in STN activity under anaesthesia. We found a significant decrease in firing rate and a prominent increase in bursting of neurons in the anaesthetised state. Also, these data were used to determine the most important parameters for classification. We revealed the differences between parametric and nonparametric approaches regarding the identification of the most important spike train features. The random forest trees algorithm showed a greater accuracy of classification (91.7 ± 1.8%) compared to generalised linear models (82.4 ± 3.8%). The lists of the features important for classification according to F-scores and random forest trees also differed markedly. Our results indicate that feature interactions play a key role in neuronal activity analysis and must be taken into account.


Subject(s)
Anesthesia, General , Anesthesia, Local , Deep Brain Stimulation/methods , Neurons/physiology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Aged , Electrodes, Implanted , Humans , Microelectrodes , Middle Aged , Propofol
15.
J Neurosci Methods ; 311: 164-169, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30336222

ABSTRACT

BACKGROUND: The patterns of neuronal activity may be considered one of the most important features to describe the state of the neuron and its alterations under particular circumstances. However, most of the proposed methods in this area rely on values or parameter boundaries that have been chosen arbitrarily. NEW METHOD: In this paper, we propose a method for analyzing neural patterns based on a spike density histogram and hierarchical clustering of real datasets. RESULTS: We used recordings of single unit activity obtained from pallidum of dystonic patients during DBS surgeries. We grouped spike trains into four main clusters based on similarities of the spike density histograms, and we estimated the underlying distribution parameters for each cluster. COMPARISON WITH EXISTING METHODS: The proposed method performs better than analogous approach that was based on spike density histogram shapes proposed by Labarre (Labarre et al., 2008) when applying to simulated data set described in original paper. CONCLUSIONS: In the present paper, we proposed a method for defining various numbers of patterns depending on particular tasks. The method may be effective both for rough and comprehensive descriptions of neuronal activity patterns.


Subject(s)
Action Potentials , Neurons/physiology , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Algorithms , Animals , Basal Ganglia/physiology , Cluster Analysis , Computer Simulation , Data Interpretation, Statistical , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...