Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(4): e0225323, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38440988

ABSTRACT

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Subject(s)
Sewage , Water Purification , Sewage/chemistry , Waste Disposal, Fluid , Sand , Rivers , Wastewater
2.
Sci Total Environ ; 875: 162466, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36868271

ABSTRACT

Long-term (>2.5 years) surveillance of SARS-CoV-2 RNA concentrations in wastewater was conducted within an enclosed university compound. This study aims to demonstrate how coupling wastewater-based epidemiology (WBE) with meta-data can identify which factors contribute toward the dissemination of SARS-CoV-2 within a local community. Throughout the pandemic, the temporal dynamics of SARS-CoV-2 RNA concentrations were tracked by quantitative polymerase chain reaction and analyzed in the context of the number of positive swab cases, the extent of human movement, and intervention measures. Our findings suggest that during the early phase of the pandemic, when strict lockdown was imposed, the viral titer load in the wastewater remained below detection limits, with <4 positive swab cases reported over a 14-day period in the compound. After the lockdown was lifted and global travel gradually resumed, SARS-CoV-2 RNA was first detected in the wastewater on 12 August 2020 and increased in frequency thereafter, despite high vaccination rates and mandatory face-covering requirements in the community. Accompanied by a combination of the Omicron surge and significant global travel by community members, SARS-CoV-2 RNA was detected in most of the weekly wastewater samples collected in late December 2021 and January 2022. With the cease of mandatory face covering, SARS-CoV-2 was detected in at least two of the four weekly wastewater samples collected from May through August 2022. Retrospective Nanopore sequencing revealed the presence of the Omicron variant in the wastewater with a multitude of amino acid mutations, from which we could infer the likely geographical origins through bioinformatic analysis. This study demonstrated that long-term tracking of the temporal dynamics and sequencing of variants in wastewater would aid in identifying which factors contribute the most to SARS-CoV-2 dissemination within the local community, facilitating an appropriate public health response to control future outbreaks as we now live with endemic SARS-CoV-2.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Communicable Disease Control , RNA, Viral , Retrospective Studies , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34493685

ABSTRACT

Anaerobic membrane bioreactor (AnMBR) for wastewater treatment has attracted much interest due to its efficacy in providing high-quality effluent with minimal energy costs. However, membrane biofouling represents the main bottleneck for AnMBR because it diminishes flux and necessitates frequent replacement of membranes. In this study, we assessed the feasibility of combining bacteriophages and UV-C irradiation to provide a chemical-free approach to remove biofoulants on the membrane. The combination of bacteriophage and UV-C resulted in better log cells removal and ca. 2× higher extracellular polymeric substance (EPS) concentration reduction in mature biofoulants compared to either UV-C or bacteriophage alone. The cleaning mechanism behind this combined approach is by 1) reducing the relative abundance of Acinetobacter spp. and selected bacteria (e.g., Paludibacter, Pseudomonas, Cloacibacterium, and gram-positive Firmicutes) associated with the membrane biofilm and 2) forming cavities in the biofilm to maintain water flux through the membrane. When the combined treatment was further compared with the common chemical cleaning procedure, a similar reduction on the cell numbers was observed (1.4 log). However, the combined treatment was less effective in removing EPS compared with chemical cleaning. These results suggest that the combination of UV-C and bacteriophage have an additive effect in biofouling reduction, representing a potential chemical-free method to remove reversible biofoulants on membrane fitted to an AnMBR.


Subject(s)
Bacteriophages/physiology , Biofilms/growth & development , Biofouling/prevention & control , Bioreactors/microbiology , Membranes/chemistry , Ultraviolet Rays , Water Purification/methods , Anaerobiosis , Bacteria/virology , Biofilms/radiation effects , Membranes/radiation effects , Membranes/virology , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...