Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 327(1): C184-C192, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38826137

ABSTRACT

Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Oligonucleotides , Protein Kinase Inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Cell Line, Tumor , Oligonucleotides/pharmacology , Apoptosis/drug effects , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Dasatinib/pharmacology , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
PLoS One ; 18(5): e0284876, 2023.
Article in English | MEDLINE | ID: mdl-37141212

ABSTRACT

Chronic myelogenous leukemia (CML) is a myeloproliferative disease characterized by the BCR-ABL oncogene. Despite the high performance of treatment with tyrosine kinase inhibitors (TKI), about 30% of patients develop resistance to the therapy. To improve the outcomes, identification of new targets of treatment is needed. Here, we explored the Casein Kinase 2 (CK2) as a potential target for CML therapy. Previously, we detected increased phosphorylation of HSP90ß Serine 226 in patients non-responding to TKIs imatinib and dasatinib. This site is known to be phosphorylated by CK2, which was also linked to CML resistance to imatinib. In the present work, we established six novel imatinib- and dasatinib-resistant CML cell lines, all of which had increased CK2 activation. A CK2 inhibitor, CX-4945, induced cell death of CML cells in both parental and resistant cell lines. In some cases, CK2 inhibition also potentiated the effects of TKI on the cell metabolic activity. No effects of CK2 inhibition were observed in normal mononuclear blood cells from healthy donors and BCR-ABL negative HL60 cell line. Our data indicate that CK2 kinase supports CML cell viability even in cells with different mechanisms of resistance to TKI, and thus represents a potential target for treatment.


Subject(s)
Casein Kinase II , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Dasatinib/pharmacology , Fusion Proteins, bcr-abl/metabolism , Drug Resistance, Neoplasm , Apoptosis , Protein Kinase Inhibitors/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Cell Death
3.
Nutr Res ; 72: 70-79, 2019 12.
Article in English | MEDLINE | ID: mdl-31759770

ABSTRACT

Long-chain n-3 polyunsaturated fatty acids modulate immune cell functions. The primary objective of this study was to evaluate the impact of different lipid emulsions (LEs) with supplemented doses of fish oil (FO) on serum cytokine concentration and in vitro cytokine production in patients with intestinal failure on home parenteral nutrition (HPNPs). We hypothesized that FO supplementation would diminish lipopolysaccharide (LPS)-stimulated cytokine production. Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. After this cycle, the patients were randomized to subsequently receive 1 cycle with Lipoplus and 1 cycle with ClinOleic for 6 weeks or vice versa plus 4 weeks of added Omegaven after each cycle in a crossover design. Comparison of the baseline LE regimens showed lower LPS-stimulated production of IL-1ß in the HPNPs on Lipoplus than on the Smoflipid and ClinOleic regimens, as well as lower IL-8 compared to the Smoflipid regimen. Omegaven reduced IL-8 concentration in serum under the Lipoplus regimen and diminished LPS-stimulated production of IL-1ß under the Smoflipid and ClinOleic. IL-6 and TNF-α production was depressed only in those on Smoflipid. Irrespective of the LE used, the HPNPs compared to the healthy controls showed higher IL-6, IL-8, and TNF-α concentrations in serum and LPS-stimulated production of IL-6 as well as lower n-6/n-3 long-chain polyunsaturated fatty acids in the erythrocyte phospholipids. LPS-stimulated production of IL-6 correlated negatively with the parenteral dose of eicosapentaenoic acid + docosahexaenoic acid. In conclusion, FO-supplemented parenteral nutrition suppresses in vitro cytokine production.


Subject(s)
Cytokines/blood , Fat Emulsions, Intravenous/pharmacology , Fish Oils/pharmacology , Parenteral Nutrition, Home/methods , Adult , Aged , Aged, 80 and over , Cross-Over Studies , Dietary Supplements , Fat Emulsions, Intravenous/administration & dosage , Fat Emulsions, Intravenous/metabolism , Female , Fish Oils/administration & dosage , Fish Oils/blood , Humans , In Vitro Techniques , Male , Middle Aged
4.
Int J Biochem Cell Biol ; 39(5): 1006-15, 2007.
Article in English | MEDLINE | ID: mdl-17376729

ABSTRACT

Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.


Subject(s)
Histocompatibility Antigens Class I/physiology , Iron/metabolism , Liver/metabolism , Membrane Proteins/physiology , Proteome/metabolism , Amino Acid Sequence , Animals , Electrophoresis, Gel, Two-Dimensional , Gene Expression , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis/pathology , Hemochromatosis Protein , Histocompatibility Antigens Class I/genetics , Iron Overload/genetics , Iron Overload/metabolism , Iron Overload/pathology , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Polymerase Chain Reaction , Proteome/genetics , Proteomics/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Atomic
5.
Am J Physiol Gastrointest Liver Physiol ; 292(6): G1490-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17307722

ABSTRACT

Liver iron overload can be found in hereditary hemochromatosis, chronic liver diseases such as alcoholic liver disease, and chronic viral hepatitis or secondary to repeated blood transfusions. The excess iron promotes liver damage, including fibrosis, cirrhosis, and hepatocellular carcinoma. Despite significant research effort, we remain largely ignorant of the cellular consequences of liver iron overload and the cellular processes that result in the observed pathological changes. In addition, the variability in outcome and the compensatory response that likely modulates the effect of increased iron levels are not understood. To provide insight into these critical questions, we undertook a study to determine the consequences of iron overload on protein levels in liver using a proteomic approach. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we studied hepatic iron overload induced by carbonyl iron-rich diet in mice and identified 30 liver proteins whose quantity changes in condition of excess liver iron. Among the identified proteins were enzymes involved in several important metabolic pathways, namely the urea cycle, fatty acid oxidation, and the methylation cycle. This pattern of changes likely reflects compensatory and pathological changes associated with liver iron overload and provides a window into these processes.


Subject(s)
Enzymes/metabolism , Fatty Acids/metabolism , Iron Overload/complications , Liver Diseases/metabolism , Liver/metabolism , Proteomics/methods , Urea/metabolism , Animals , Disease Models, Animal , Electrophoresis, Gel, Two-Dimensional , Iron Compounds , Iron Overload/chemically induced , Iron Overload/metabolism , Iron Overload/pathology , Liver/enzymology , Liver/pathology , Liver Diseases/enzymology , Liver Diseases/etiology , Liver Diseases/pathology , Male , Methylation , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Severity of Illness Index , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Exp Hematol ; 35(2): 193-202, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17258068

ABSTRACT

OBJECTIVE: Murine erythroleukemia (MEL) cells are transformed erythroid precursors that are arrested in an immature and proliferating state. These leukemic cells can be grown in cell cultures and induced to terminal erythroid differentiation by a treatment with a specific chemical inducer such as N,N'-hexamethylene bisacetamide. MEL cells then re-enter their original erythroid program and differentiate along the erythroid pathway into non-dividing hemoglobin-rich cells resembling orthochromatophilic normoblasts. To deepen our understanding of the molecular mechanisms underlying and erythroid differentiation and leukemia we monitored changes in protein expression in differentiating MEL cells. METHODS: In our effort to find new candidate proteins involved in the differentiation of MEL cells, we embraced a proteomic approach. Employing two-dimensional (2D) electrophoresis combined with mass spectrometry, we compared protein expression in non-induced MEL cells with MEL cells exposed to N,N'-hexamethylene bisacetamide for 48 h. RESULTS: From 700 proteins spots observed, 31 proteins were differentially expressed. We successfully identified 27 of the differentially expressed molecules by mass spectrometry (MALDI-MS). CONCLUSION: In addition to proteins involved in heme biosynthesis, protein metabolism, stress defense and cytoskeletal organization, we identified 3 proteins engaged in regulation of cellular trafficking and 7 proteins important for regulation of gene expression and cell cycle progression including 3 components of chromatin remodeling complexes. Many of the identified molecules are associated with erythroid differentiation or leukemia for the first time. To our knowledge, this is the first study applying a modern proteomic approach to the direct analysis of erythroid differentiation of leukemic cells.


Subject(s)
Acetamides/pharmacology , Cell Differentiation/drug effects , Erythroid Cells/metabolism , Leukemia, Erythroblastic, Acute/metabolism , Proteome/metabolism , Animals , Cell Line, Tumor , Electrophoresis, Gel, Two-Dimensional/methods , Erythroid Cells/chemistry , Erythroid Cells/drug effects , Leukemia, Erythroblastic, Acute/drug therapy , Mass Spectrometry/methods , Mice , Proteome/chemistry , Proteome/drug effects , Proteomics/methods , Tumor Cells, Cultured
7.
Am J Physiol Gastrointest Liver Physiol ; 290(5): G1059-66, 2006 May.
Article in English | MEDLINE | ID: mdl-16410366

ABSTRACT

Iron-mediated organ damage is common in patients with iron overload diseases, namely, hereditary hemochromatosis. Massive iron deposition in parenchymal organs, particularly in the liver, causes organ dysfunction, fibrosis, cirrhosis, and also hepatocellular carcinoma. To obtain deeper insight into the poorly understood and complex cellular response to iron overload and consequent oxidative stress, we studied iron overload in liver-derived HepG2 cells. Human hepatoma HepG2 cells were exposed to a high concentration of iron for 3 days, and protein expression changes initiated by the iron overload were studied by two-dimensional electrophoresis and mass spectrometry. From a total of 1,060 spots observed, 21 spots were differentially expressed by iron overload. We identified 19 of them; 11 identified proteins were upregulated, whereas 8 identified proteins showed a decline in response to iron overload. The differentially expressed proteins are involved in iron storage, stress response and protection against oxidative stress, protein folding, energy metabolism, gene expression, cell cycle regulation, and other processes. Many of these molecules have not been previously suggested to be involved in the response to iron overload and the consequent oxidative stress.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Iron Overload/metabolism , Liver/metabolism , Proteomics/methods , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase, Mitochondrial , Amino Acid Sequence , Cell Line, Tumor , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Humans , Lipid Peroxidation , Mass Spectrometry , Molecular Sequence Data , Oxidative Stress , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...