Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948755

ABSTRACT

Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.

2.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35325614

ABSTRACT

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Subject(s)
Huntington Disease , Cognition , DNA , Genome-Wide Association Study , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Trinucleotide Repeat Expansion
3.
Hum Mol Genet ; 30(3-4): 135-148, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33432339

ABSTRACT

Huntington's disease pathogenesis involves a genetic gain-of-function toxicity mechanism triggered by the expanded HTT CAG repeat. Current therapeutic efforts aim to suppress expression of total or mutant huntingtin, though the relationship of huntingtin's normal activities to the gain-of-function mechanism and what the effects of huntingtin-lowering might be are unclear. Here, we have re-investigated a rare family segregating two presumed HTT loss-of-function (LoF) variants associated with the developmental disorder, Lopes-Maciel-Rodan syndrome (LOMARS), using whole-genome sequencing of DNA from cell lines, in conjunction with analysis of mRNA and protein expression. Our findings correct the muddled annotation of these HTT variants, reaffirm they are the genetic cause of the LOMARS phenotype and demonstrate that each variant is a huntingtin hypomorphic mutation. The NM_002111.8: c.4469+1G>A splice donor variant results in aberrant (exon 34) splicing and severely reduced mRNA, whereas, surprisingly, the NM_002111.8: c.8157T>A NP_002102.4: Phe2719Leu missense variant results in abnormally rapid turnover of the Leu2719 huntingtin protein. Thus, although rare and subject to an as yet unknown LoF intolerance at the population level, bona fide HTT LoF variants can be transmitted by normal individuals leading to severe consequences in compound heterozygotes due to huntingtin deficiency.


Subject(s)
Gene Expression Regulation , Huntingtin Protein/genetics , Mutation , Neurodevelopmental Disorders/genetics , Amino Acid Sequence , Cell Line , Child , Child, Preschool , Female , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Loss of Function Mutation , Male , Mutation, Missense , Neurodevelopmental Disorders/metabolism , Pedigree , Phenotype , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, DNA
4.
Hum Mol Genet ; 29(18): 3044-3053, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32876667

ABSTRACT

Recent genome-wide association studies of age-at-onset in Huntington's disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Subject(s)
Cell Cycle Proteins/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Multifunctional Enzymes/genetics , MutL Protein Homolog 1/genetics , Ribonucleotide Reductases/genetics , Age of Onset , Animals , Disease Models, Animal , Genes, Modifier/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Huntington Disease/pathology , Mice , Mice, Knockout , Phenotype , Trinucleotide Repeat Expansion/genetics
5.
Hum Mol Genet ; 29(15): 2551-2567, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32761094

ABSTRACT

The expanded HTT CAG repeat causing Huntington's disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.


Subject(s)
Huntington Disease/genetics , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/genetics , Adult , Aged , Autopsy , Central Nervous System/pathology , Child , Female , Humans , Huntingtin Protein/genetics , Huntington Disease/diagnostic imaging , Huntington Disease/pathology , Male , Middle Aged , Neostriatum/diagnostic imaging , Neostriatum/metabolism , Neostriatum/pathology , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/pathology
6.
Am J Hum Genet ; 107(1): 96-110, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32589923

ABSTRACT

A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.


Subject(s)
Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Huntington Disease/genetics , Multifunctional Enzymes/genetics , Cell Line , Genome-Wide Association Study/methods , HEK293 Cells , Haplotypes/genetics , Humans , Polymorphism, Single Nucleotide/genetics
7.
Biol Psychiatry ; 87(9): 857-865, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32087949

ABSTRACT

BACKGROUND: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. METHODS: We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by 1) constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders and of intelligence and 2) testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n = 5160) of patients with HD. RESULTS: Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. CONCLUSIONS: Polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.


Subject(s)
Huntington Disease , Psychotic Disorders , Cognition , Genome-Wide Association Study , Humans , Huntington Disease/complications , Huntington Disease/genetics , Psychotic Disorders/complications , Psychotic Disorders/genetics , Risk Factors
8.
Am J Hum Genet ; 103(3): 349-357, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30122542

ABSTRACT

Age at onset of Huntington disease, an inherited neurodegenerative disorder, is influenced by the size of the disease-causing CAG trinucleotide repeat expansion in HTT and by genetic modifier loci on chromosomes 8 and 15. Stratifying by modifier genotype, we have examined putamen volume, total motor score (TMS), and symbol digit modalities test (SDMT) scores, both at study entry and longitudinally, in normal controls and CAG-expansion carriers who were enrolled prior to the emergence of manifest HD in the PREDICT-HD study. The modifiers, which included onset-hastening and onset-delaying alleles on chromosome 15 and an onset-hastening allele on chromosome 8, revealed no major effect in controls but distinct patterns of modification in prediagnosis HD subjects. Putamen volume at study entry showed evidence of reciprocal modification by the chromosome 15 alleles, but the rate of loss of putamen volume was modified only by the deleterious chromosome 15 allele. By contrast, both alleles modified the rate of change of the SDMT score, but neither had an effect on the TMS. The influence of the chromosome 8 modifier was evident only in the rate of TMS increase. The data indicate that (1) modification of pathogenesis can occur early in the prediagnosis phase, (2) the modifier loci act in genetic interaction with the HD mutation rather than through independent additive effects, and (3) HD subclinical phenotypes are differentially influenced by each modifier, implying distinct effects in different cells or tissues. Together, these findings indicate the potential benefit of using genetic modifier strategies for dissecting the prediagnosis pathogenic process in HD.


Subject(s)
Huntington Disease/genetics , Mutation/genetics , Adult , Alleles , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 8/genetics , Female , Genotype , Humans , Huntingtin Protein/genetics , Male , Phenotype , Trinucleotide Repeat Expansion/genetics
9.
Eur J Hum Genet ; 25(11): 1202-1209, 2017 11.
Article in English | MEDLINE | ID: mdl-28832564

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat in HTT, resulting in an extended polyglutamine tract in huntingtin. We and others have previously determined that the HD-causing expansion occurs on multiple different haplotype backbones, reflecting more than one ancestral origin of the same type of mutation. In view of the therapeutic potential of mutant allele-specific gene silencing, we have compared and integrated two major systems of HTT haplotype definition, combining data from 74 sequence variants to identify the most frequent disease-associated and control chromosome backbones and revealing that there is potential for additional resolution of HD haplotypes. We have used the large collection of 4078 heterozygous HD subjects analyzed in our recent genome-wide association study of HD age at onset to estimate the frequency of these haplotypes in European subjects, finding that common genetic variation at HTT can distinguish the normal and CAG-expanded chromosomes for more than 95% of European HD individuals. As a resource for the HD research community, we have also determined the haplotypes present in a series of publicly available HD subject-derived fibroblasts, induced pluripotent cells, and embryonic stem cells in order to facilitate efforts to develop inclusive methods of allele-specific HTT silencing applicable to most HD patients. Our data providing genetic guidance for therapeutic gene-based targeting will significantly contribute to the developments of rational treatments and implementation of precision medicine in HD.


Subject(s)
Haplotypes , Huntington Disease/genetics , Cell Line , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Gene Frequency , Heterozygote , Humans , Huntingtin Protein/genetics , Induced Pluripotent Stem Cells/metabolism , Polymorphism, Genetic
10.
Hum Mol Genet ; 26(5): 913-922, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28334820

ABSTRACT

Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+ mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis.


Subject(s)
Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntington Disease/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Corpus Striatum/pathology , Disease Models, Animal , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Genetic Background , Genomic Instability/genetics , Humans , Huntingtin Protein/biosynthesis , Huntington Disease/pathology , Mice , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Phenotype , Transcriptome/genetics
11.
Am J Hum Genet ; 98(2): 287-98, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26849111

ABSTRACT

Huntington disease (HD) is caused by an expanded HTT CAG repeat that leads in a length-dependent, completely dominant manner to onset of a characteristic movement disorder. HD also displays early mortality, so we tested whether the expanded CAG repeat exerts a dominant influence on age at death and on the duration of clinical disease. We found that, as with clinical onset, HD age at death is determined by expanded CAG-repeat length and has no contribution from the normal CAG allele. Surprisingly, disease duration is independent of the mutation's length. It is also unaffected by a strong genetic modifier of HD motor onset. These findings suggest two parsimonious alternatives. (1) HD pathogenesis is driven by mutant huntingtin, but before or near motor onset, sufficient CAG-driven damage occurs to permit CAG-independent processes and then lead to eventual death. In this scenario, some pathological changes and their clinical correlates could still worsen in a CAG-driven manner after disease onset, but these CAG-related progressive changes do not themselves determine duration. Alternatively, (2) HD pathogenesis is driven by mutant huntingtin acting in a CAG-dependent manner with different time courses in multiple cell types, and the cellular targets that lead to motor onset and death are different and independent. In this scenario, processes driven by HTT CAG length lead directly to death but not via the striatal pathology associated with motor manifestations. Each scenario has important ramifications for the design and testing of potential therapeutics, especially those aimed at preventing or delaying characteristic motor manifestations.


Subject(s)
Huntington Disease/genetics , Mutation , Nerve Tissue Proteins/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Alleles , Child , Child, Preschool , Cohort Studies , Corpus Striatum/metabolism , Haplotypes , Humans , Huntingtin Protein , Huntington Disease/mortality , Middle Aged , Nerve Tissue Proteins/metabolism , Young Adult
12.
Am J Hum Genet ; 97(3): 435-44, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26320893

ABSTRACT

Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches. Consequently, we performed whole-genome sequencing of HD and control subjects from four independent families in whom the major European HD haplotype segregates with the disease. Analysis of the full-sequence-based HTT haplotype indicated that these four families share a common ancestor sufficiently distant to have permitted the accumulation of family-specific variants. Confirmation of new CAG-expansion mutations on this haplotype suggests that unlike most founders of human disease, the common ancestor of HD-affected families with the major haplotype most likely did not have HD. Further, availability of the full sequence data validated the use of SNP imputation to predict the optimal variants for capturing heterozygosity in personalized allele-specific gene-silencing approaches. As few as ten SNPs are capable of revealing heterozygosity in more than 97% of European HD subjects. Extension of allele-specific silencing strategies to the few remaining homozygous individuals is likely to be achievable through additional known SNPs and discovery of private variants by complete sequencing of HTT. These data suggest that the current development of gene-based targeting for HD could be extended to personalized allele-specific approaches in essentially all HD individuals of European ancestry.


Subject(s)
Evolution, Molecular , Haplotypes/genetics , Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Trinucleotide Repeat Expansion/genetics , White People/genetics , Base Sequence , Founder Effect , Heterozygote , Humans , Huntingtin Protein , Molecular Sequence Data , Pedigree , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
13.
Bipolar Disord ; 17(4): 403-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25726852

ABSTRACT

OBJECTIVES: Huntington's disease is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms that are caused by huntingtin gene (HTT) CAG trinucleotide repeat alleles of 36 or more units. A greater than expected prevalence of incompletely penetrant HTT CAG repeat alleles observed among individuals diagnosed with major depressive disorder raises the possibility that another mood disorder, bipolar disorder, could likewise be associated with Huntington's disease. METHODS: We assessed the distribution of HTT CAG repeat alleles in a cohort of individuals with bipolar disorder. HTT CAG allele sizes from 2,229 Caucasian individuals diagnosed with DSM-IV bipolar disorder were compared to allele sizes in 1,828 control individuals from multiple cohorts. RESULTS: We found that HTT CAG repeat alleles > 35 units were observed in only one of 4,458 chromosomes from individuals with bipolar disorder, compared to three of 3,656 chromosomes from control subjects. CONCLUSIONS: These findings do not support an association between bipolar disorder and Huntington's disease.


Subject(s)
Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Trinucleotide Repeats/genetics , Adult , Alleles , Amyotrophic Lateral Sclerosis/genetics , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Female , Genotype , Humans , Huntingtin Protein , Huntington Disease/diagnosis , Male , Middle Aged , Penetrance , Prevalence , Statistics as Topic
14.
Am J Med Genet B Neuropsychiatr Genet ; 168B(2): 135-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25656686

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder characterized by involuntary choreic movements, cognitive impairment, and behavioral changes, caused by the expansion of an unstable CAG repeat in HTT. We characterized the genetic diversity of the HD mutation by performing an extensive haplotype analysis of ∼1Mb region flanking HTT in over 300 HD families of Portuguese origin. We observed that haplotype A, marked by HTT delta2642, was enriched in HD chromosomes and carried the two largest expansions reported in the Portuguese population. However, the most frequent HD haplotype B carried one of the largest (+12 CAGs) expansions, which resulted in an allele class change to full penetrance. Despite having a normal CAG distribution skewed to the higher end of the range, these two core haplotypes had similar expanded CAG repeat sizes compared to the other major core haplotypes (C and D) and there was no statistical difference in transmitted repeat instability across haplotypes. We observed a diversity of HTT region haplotypes in both normal and expanded chromosomes, representative of more than one ancestral chromosome underlying HD in Portugal, where multiple independent events on distinct chromosome 4 haplotypes have given rise to expansion into the pathogenic range.


Subject(s)
Chromosomes, Human, Pair 4/genetics , Haplotypes/genetics , Huntington Disease/genetics , Alleles , Base Pairing/genetics , Family , Female , Genomic Instability , Humans , Male , Pedigree , Polymorphism, Single Nucleotide/genetics , Portugal , Trinucleotide Repeat Expansion/genetics
15.
Mamm Genome ; 26(3-4): 119-30, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645993

ABSTRACT

Huntington's disease (HD) is a dominant neurodegenerative disorder that is due to expansion of an unstable HTT CAG repeat for which genome-wide genetic scans are now revealing chromosome regions that contain disease-modifying genes. We have explored a novel human-mouse cross-species functional prioritisation approach, by evaluating the HD modifier 6q23-24 linkage interval. This unbiased strategy employs C57BL/6J (B6J) Hdh(Q111) knock-in mice, replicates of the HD mutation, and the C57BL/6J-chr10(A/J)/NaJ chromosome substitution strain (CSS10), in which only chromosome 10 (chr10), in synteny with the human 6q23-24 region, is derived from the A/J (AJ) strain. Crosses were performed to assess the possibility of dominantly acting chr10 AJ-B6J variants of strong effect that may modulate CAG-dependent Hdh(Q111/+) phenotypes. Testing of F1 progeny confirmed that a single AJ chromosome had a significant effect on the rate of body weight gain and in Hdh(Q111) mice the AJ chromosome was associated subtle alterations in somatic CAG instability in the liver and the formation of intra-nuclear inclusions, as well as DARPP-32 levels, in the striatum. These findings in relatively small cohorts are suggestive of dominant chr10 AJ-B6 variants that may modify effects of the CAG expansion, and encourage a larger study with CSS10 and sub-strains. This cross-species approach may therefore be suited to functional in vivo prioritisation of genomic regions harbouring genes that can modify the early effects of the HD mutation.


Subject(s)
Chromosomes, Mammalian , Crosses, Genetic , Huntington Disease/genetics , Quantitative Trait Loci , Alleles , Animals , Body Weight , Chromosomes, Human , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Female , Gene Knock-In Techniques , Genetic Variation , Genomic Instability , Genotype , Humans , Huntingtin Protein , Male , Mice , Mice, Transgenic , Mutation , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phenotype , Trinucleotide Repeats
16.
Neurogenetics ; 14(3-4): 173-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23644918

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate polymorphisms in N-methyl-D-aspartate receptor subtype genes (GRIN2A rs4998386 and rs2650427, and GRIN2B rs1806201) and functional polymorphisms in genes in the dopamine pathway (DAT1 3' UTR 40-bp variable number tandem repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2 rs1800497, and COMT rs4608) as potential modifiers of the disease process. None of the seven polymorphisms tested was found to be associated with significant modification of motor AO, either in a dominant or additive model, after adjusting for ancestry. The results of this candidate-genetic study therefore do not provide strong evidence to support a modulatory role for these variations within glutamatergic and dopaminergic genes in the AO of HD motor manifestations.


Subject(s)
Huntington Disease/genetics , Polymorphism, Genetic , Receptors, Dopamine/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Age of Onset , Catechol O-Methyltransferase/genetics , Dopamine Plasma Membrane Transport Proteins/genetics , Genetic Association Studies , Humans , Huntington Disease/epidemiology , Neural Pathways/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D4/genetics
17.
Hum Mol Genet ; 22(16): 3227-38, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23595883

ABSTRACT

In Huntington's disease (HD), the size of the expanded HTT CAG repeat mutation is the primary driver of the processes that determine age at onset of motor symptoms. However, correlation of cellular biochemical parameters also extends across the normal repeat range, supporting the view that the CAG repeat represents a functional polymorphism with dominant effects determined by the longer allele. A central challenge to defining the functional consequences of this single polymorphism is the difficulty of distinguishing its subtle effects from the multitude of other sources of biological variation. We demonstrate that an analytical approach based upon continuous correlation with CAG size was able to capture the modest (∼21%) contribution of the repeat to the variation in genome-wide gene expression in 107 lymphoblastoid cell lines, with alleles ranging from 15 to 92 CAGs. Furthermore, a mathematical model from an iterative strategy yielded predicted CAG repeat lengths that were significantly positively correlated with true CAG allele size and negatively correlated with age at onset of motor symptoms. Genes negatively correlated with repeat size were also enriched in a set of genes whose expression were CAG-correlated in human HD cerebellum. These findings both reveal the relatively small, but detectable impact of variation in the CAG allele in global data in these peripheral cells and provide a strategy for building multi-dimensional data-driven models of the biological network that drives the HD disease process by continuous analysis across allelic panels of neuronal cells vulnerable to the dominant effects of the HTT CAG repeat.


Subject(s)
Gene Expression , Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Trinucleotide Repeats/genetics , Age of Onset , Alleles , Cell Line , Cerebellum/metabolism , Female , Gene Expression Regulation , Humans , Huntingtin Protein , Huntington Disease/diagnosis , Huntington Disease/metabolism , Male , Models, Genetic , Polymorphism, Genetic , Reproducibility of Results , Transcriptome
18.
Cell ; 153(3): 707-20, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622250

ABSTRACT

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Gene Regulatory Networks , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Animals , Bayes Theorem , Brain/pathology , Humans , Membrane Proteins/metabolism , Mice , Microglia/metabolism
19.
Neurology ; 79(16): 1708-15, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23035064

ABSTRACT

OBJECTIVE: To evaluate the relationship of striatal involvement in Huntington disease (HD) to involvement in other brain regions, CAG repeat size, onset age, and other factors. METHODS: We examined patterns of neuropathologic involvement in 664 HD brains submitted to the Harvard Brain Tissue Resource Center. Brains with concomitant Alzheimer or Parkinson changes (n = 82), more than 20% missing data (n = 46), incomplete sample submission (n = 12), or CAG repeat less than 36 (n = 1) were excluded, leaving 523 cases. Standardized ratings from 0 (absent) to 4 (severe) of gross and microscopic involvement were performed for 50 regions. Cluster analysis reduced the data to 2 main measures of involvement: striatal and cortical. RESULTS: The clusters were correlated with each other (r = 0.42) and with disease duration (striatal: r = 0.35; cortical: r = 0.31). The striatal cluster was correlated with HD repeat size (r = 0.50). The cortical cluster showed a stronger correlation with decreased brain weight (r = -0.52) than the striatal cluster (r = -0.33). The striatal cluster was correlated with younger death age (r = -0.31) and onset age (r = -0.46) while the cortical cluster was not (r = 0.09, r = -0.04, respectively). CONCLUSIONS: The 2 brain clusters had different relationships to the HD CAG repeat size, onset age, and brain weight, suggesting that neuropathologic involvement does not proceed in a strictly coupled fashion. The pattern and extent of involvement varies substantially from one brain to the next. These results suggest that regional involvement in HD brain is modified by factors which, if identified, may lend insight into novel routes to therapeutics.


Subject(s)
Cerebral Cortex/pathology , Huntington Disease/pathology , Neostriatum/pathology , Adult , Age of Onset , Aged , Autopsy , Brain/pathology , Cadaver , Caudate Nucleus/pathology , Cluster Analysis , Female , Gliosis/pathology , Humans , Huntington Disease/genetics , Male , Middle Aged , Multivariate Analysis , Neurons/pathology , Organ Size , Trinucleotide Repeats
20.
Hum Genet ; 131(12): 1833-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22825315

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by motor, cognitive and behavioral disturbances, caused by the expansion of a CAG trinucleotide repeat in the HD gene. The CAG allele size is the major determinant of age at onset (AO) of motor symptoms, although the remaining variance in AO is highly heritable. The rs7665116 SNP in PPARGC1A, encoding the mitochondrial regulator PGC-1α, has been reported to be a significant modifier of AO in three European HD cohorts, perhaps due to affected cases from Italy. We attempted to replicate these findings in a large collection of (1,727) HD patient DNA samples of European origin. In the entire cohort, rs7665116 showed a significant effect in the dominant model (p value = 0.008) and the additive model (p value = 0.009). However, when examined by origin, cases of Southern European origin had an increased rs7665116 minor allele frequency (MAF), consistent with this being an ancestry-tagging SNP. The Southern European cases, despite similar mean CAG allele size, had a significantly older mean AO (p < 0.001), suggesting population-dependent phenotype stratification. When the generalized estimating equations models were adjusted for ancestry, the effect of the rs7665116 genotype on AO decreased dramatically. Our results do not support rs7665116 as a modifier of AO of motor symptoms, as we found evidence for a dramatic effect of phenotypic (AO) and genotypic (MAF) stratification among European cohorts that was not considered in previously reported association studies. A significantly older AO in Southern Europe may reflect population differences in genetic or environmental factors that warrant further investigation.


Subject(s)
Heat-Shock Proteins/genetics , Huntington Disease/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Adult , Age of Onset , Cohort Studies , Europe/epidemiology , Female , Genetics, Population , Humans , Huntingtin Protein , Huntington Disease/epidemiology , Male , Middle Aged , Nerve Tissue Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Trinucleotide Repeat Expansion
SELECTION OF CITATIONS
SEARCH DETAIL
...