Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 16(1): 33, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015283

ABSTRACT

Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.

2.
Adv Mater ; 35(16): e2208984, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36691762

ABSTRACT

In situ exsolution for nanoscale electrode design has attracted considerable attention because of its promising activity and high stability. However, fundamental research on the mechanisms underlying particle growth remains insufficient. Herein, cation-diffusion-determined exsolution is presented using an analytical model based on classical nucleation and diffusion. In the designed perovskite system, the exsolution trend for particle growth is consistent with this diffusion model, which strongly depends on the initial cation concentration and reduction conditions. Based on the experimental and theoretical results, a highly Ni-doped anode and an electrochemical switching technique are employed to promote exsolution and overcome growth limitations. The optimal cell exhibits an outstanding maximum power density of 1.7 W cm-2 at 900 °C and shows no evident degradation when operating at 800 °C for 240 h under wet H2 . This study provides crucial insights into the developing and tuning of heterogeneous catalysts for energy-conversion applications.

3.
ACS Appl Mater Interfaces ; 14(16): 18275-18282, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35385269

ABSTRACT

The gas sensing characteristics of oxide semiconductors can be enhanced by loading noble metal or metal oxide catalysts. The uniform distribution of nanoscale catalysts with high thermal stability over the sensing materials is essential for sensors operating at elevated temperatures. An in situ exsolution process, which can be applied to catalysts, batteries, and sensors, provides a facile synthetic route for developing second-phase nanoparticles with uniform distribution, excellent thermochemical stability, and strong adhesion to the mother phase. In this study, we investigated the effect of Co-exsolved nanoparticles on the gas sensing characteristics of La0.43Ca0.37Co0.06Ti0.94O3-d (LCCoT). The amount and size of the Co-exsolved nanoparticles on the surface of the perovskite mother phase were adjusted depending on the reduction temperature of the exsolution process. The LCCoT with Co-exsolved nanoparticles prepared by reduction at 700 °C exhibited a response (resistance ratio) of 116.3 to 5 ppm ethanol at 350 °C, which was 10-fold higher than the response of a sensor without exsolution. The high gas response was attributed to the catalytic effect promoted by the uniformly distributed Co-exsolved nanoparticles and the formation of p-n junctions on the sensing surface during reduction. Additionally, we demonstrated the catalytic effect of Co-exsolved nanoparticles using a proton transfer reaction-quadrupole mass spectrometer. By controlling the amount and distribution of exsolved nanoparticles on semiconductor chemiresistors, a new pathway for designing high-performance gas sensors with enhanced thermal stability can be achieved.

4.
ACS Appl Mater Interfaces ; 14(10): 12140-12148, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35238550

ABSTRACT

The strong bonding at the interface between the metal and the support, which can inhibit the undesirable aggregation of metal nanoparticles and carbon deposition from reforming of hydrocarbon, is well known as the classical strong metal-support interaction (SMSI). SMSI of nanocatalysts was significantly affected by heat treatment and reducing conditions during catalyst preparation.the heat treatment and reduction conditions during catalyst preparation. SMSI can be weakened by the decrement of metal-doped sites in the supporting oxide and can often deactivate catalysts by the encapsulation of active sites through these processes. To retain SMSI near the active sites and to enhance the catalytic activity of the nanocatalyst, it is essential to increase the number of surficial metal-doped sites between nanometal and the support. Herein, we propose a mild reduction process using dry methane (CH4/CO2) gas that suppresses the aggregation of nanoparticles and increases the exposed interface between the metal and support, Ni and cerium oxide. The effects of mild reduction on the chemical state of Ni-cerium oxide nanocatalysts were specifically investigated in this study. As a result, mild reduction led to form large amounts of the Ni3+ phase at the catalyst surface of which SMSI was significantly enhanced. It can be easily fabricated while the dry reforming of methane (DRM) reaction is on stream. The superior performance of the catalyst achieved a considerably high CH4 conversion rate of approximately 60% and stable operation up to 550 h at a low temperature, 600 °C.

5.
Front Chem ; 9: 719826, 2021.
Article in English | MEDLINE | ID: mdl-34621724
6.
Nature ; 537(7621): 528-531, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27548878

ABSTRACT

Solid oxide cells (SOCs) can operate with high efficiency in two ways-as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes-the fuel and air electrodes-separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated, they are susceptible to many other forms of degradation. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.

7.
Faraday Discuss ; 182: 227-39, 2015.
Article in English | MEDLINE | ID: mdl-26247663

ABSTRACT

A-site ordered PrBaMn2O(5+δ) was investigated as a potential cathode for CO2 electrolysis using a La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O3 (LSGM) electrolyte. The A-site ordered layered double perovskite, PrBaMn2O(5+δ), was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrical conductivity and maintain a large oxygen vacancy content, contributing to fast oxygen ion diffusion. It was found that during the oxidation of the reduced PrBaMn2O(5+δ) (O5 phase) to PrBaMn2O(6-δ) (O6 phase), a reversible oxygen switchover in the lattice takes place. In addition, here the successful CO2 electrolysis was measured in LSGM electrolyte with this novel oxide electrode. It was found that this PrBaMn2O(5+δ), layered perovskite cathode exhibits a performance with a current density of 0.85 A cm(-2) at 1.5 V and 850 °C and the electrochemical properties were also evaluated by impedance spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...