Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 149(10): 2842-2854, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38600773

ABSTRACT

Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents. The SPWs were determined by employing cyclic voltammetry, attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and surface plasmon resonance (SPR). The electrochemical and spectroscopic findings concluded that all the aromatic SAMs used displayed similar trends and SPWs. In aqueous systems, the SPW lies between the reductive desorption and oxidative desorption, with pH being the decisive factor affecting the range of the SPW, with the widest SPW observed at pH 1. In the non-aqueous electrolytes, the desorption of SAMs was observed to be slow and progressive. The polarity of the solvent was the main factor in determining the SPW. The lower the polarity of the solvent, the larger the SPW, with 1-butanol displaying the widest SPW. This work showcases the power of spectroelectrochemical analysis and provides ample future directions for the use of non-polar solvents to increase SAM stability in electrochemical applications.

2.
Anal Chem ; 96(6): 2435-2444, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294875

ABSTRACT

The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm-1 NO2 stretches for 4-NBD and the 1240 cm-1 C-C, C-C-H, and N-È® stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.

3.
ACS Appl Mater Interfaces ; 14(24): 28359-28369, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35675200

ABSTRACT

Organic redox-active materials, combined with high-surface-area carbonaceous substrates, form sustainable and low-cost composites with greatly enhanced electrochemical charge storage capacities. The electrochemical capacitive behavior of a composite electrode containing tetraphenylporphyrin sulfonate (TPPS), Chemically polymerized luminol (CpLum), and carbon nanotubes (TPPS-CpLum-CNT) was studied and compared with individual TPPS-CNT and CpLum-CNT composites. The dual-layer TPPS-CpLum had a combined contribution to the electrochemical charge storage, which led to an increased volumetric capacitance over the bare CNT and individual TPPS-CNT and CpLum-CNT composites. The synergistic interactions in the composite enabled faster charge storage kinetics and great stability. Spectroscopic analyses revealed that TPPS and CpLum interact electronically through noncovalent π-π and van der Waals bonds, which facilitates the transfer of electrons during charge and discharge. The synergy in charge storage was confirmed by density functional theory computational analysis, which suggested favorable physisorption and interfacial electronic interactions for TPPS adsorbed to a CpLum-carbon substrate. The combined insights from experimental and computational characterizations show that superimposing redox-active organic layers can be an effective and sustainable approach to design and engineer the surface of carbonaceous materials for capacitive charge storage.

4.
Membranes (Basel) ; 10(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202720

ABSTRACT

A stable and magnetic graphene oxide (GO) foam-polyethyleneimine-iron nanoparticle (GO-PEI-FeNPs) composite has been fabricated for removal of endocrine disruptors-bisphenol A, progesterone and norethisterone-from aqueous solution. The foam with porous and hierarchical structures was synthesized by reduction of graphene oxide layers coupled with co-precipitation of iron under a hydrothermal system using polyethyleneimine as a cross linker. The presence of magnetic iron nanoparticles facilitates the separation process after decontamination. The foam was fully characterized by surface and structural scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The foam exhibits a high adsorption capacity, and the maximum adsorption percentages are 68%, 49% and 80% for bisphenol A, progesterone and norethisterone, respectively. The adsorption process of bisphenol A is explained according to the Langmuir model, whereas the Freundlich model was used for progesterone and norethisterone adsorption.

5.
Sci Rep ; 10(1): 13612, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32788744

ABSTRACT

The integration of graphene materials into electrochemical biosensing platforms has gained significant interest in recent years. Bulk quantities of graphene can be synthesized by oxidation of graphite to graphite oxide and subsequent exfoliation to graphene oxide (GO). However, the size of the resultant GO sheets changes from the parent graphite yielding a polydispersed solution of sizes ranging from a few nanometers to tens of micrometers. Here, we investigate the direct effect of GO sheets sizes on biosensor performance. We separated different GO sheets sizes, and we characterized them via atomic force, scanning electron, Raman and X-ray photoelectron spectroscopies and solid state nuclear magnetic resonance (NMR). As proof of concept, the sensing performance of these GO samples was probed using a well-known ssDNA aptasensor against microcystin-LR toxin and an immunosensor against ß-lactoglobulin. The resulting aptasensors and immunosensors are fabricated by using covalent attachment and physical adsorption. We found that the aptasensors fabricated using physical adsorption, the binding signal variation was dramatically increased with increasing the GO sheet size. In contrast, for the aptasensor fabricated using covalent immobilization, the binding signal variation decreased with increasing GO sheet size. However, for the ß-lactoglobulin immunosensors, the optimum signals were observed at intermediate GO sheet size. GO sheet size could enhance or inhibit the sensitivity of the graphene-based electrochemical sensors. Our results demonstrate that controlling the size of GO sheets may have a profound impact in specific biosensing applications.

6.
Chem Commun (Camb) ; 56(9): 1373-1376, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31909400

ABSTRACT

Phosphate functionalized carbon nanomaterials have attracted significant attention because of their potential applications in energy storage applications. Herein we report a facile one-pot method to prepare water dispersible phosphate functionalized reduced graphene oxide and demonstrate the potential of the novel materials for energy storage applications. The synthesis method shows promise to promote a wider adoption of reduced graphene oxide for high performance applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...