Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8423, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589821

ABSTRACT

Two Dioscorea alata populations were generated by hand pollination between contrasted diploid genitors. Population A (74F × Kabusa) was composed of 121 progenies while population B (74F × 14M) involved 193 progenies. These two populations were assessed over two consecutive years regarding important tuber quality traits. Analysis of variance showed that the genotype had the greatest influence on the phenotypic scores. Also for some traits, effect of the year_replicate was strong. The heritabilities of most traits were high. Based on these data and a reference high-density genetic map of greater yam, a total of 34 quantitative trait loci (QTLs) were detected on 8 of the 20 yam chromosomes. They corresponded to five of each of the following traits: tuber size, shape regularity, tubercular roots, skin texture, tuber flesh oxidation, six for oxidation ratio and three for flesh colour. The fraction of total phenotypic variance attributable to a single QTL ranged from 11.1 to 43.5%. We detected significant correlations between traits and QTL colocalizations that were consistent with these correlations. A majority of QTLs (62%) were found on linkage group LG16, indicating that this chromosome could play a major role in genetic control of the investigated traits. In addition, an inversion involving this chromosome was detected in the Kabusa male. Nine QTLs were validated on a diversity panel, including three for tuber size, three for shape regularity, two for skin texture and one for tubercular roots. The approximate physical localization of validated QTLs allowed the identification of various candidates genes. The validated QTLs should be useful for breeding programs using marker-assisted selection to improve yam tuber quality.


Subject(s)
Dioscorea , Quantitative Trait Loci , Dioscorea/genetics , Genetic Linkage , Phenotype , Plant Breeding , Plant Tubers/genetics , Quantitative Trait Loci/genetics
2.
Plants (Basel) ; 10(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34961033

ABSTRACT

Dioscorea alata (L.), also referred to as water, winged, or greater yam, is one of the most economically important staple food crops in tropical and subtropical areas. In Côte d'Ivoire, it represents, along with other yam species, the largest food crop and significantly contributes to food security. However, studies focusing on better understanding the structure and extent of genetic diversity among D. alata accessions, using molecular and phenotypic traits, are limited. This study was, therefore, conducted to assess the pattern of genetic variability in a set of 188 D. alata accessions from the National Agronomic Research Centre (CNRA) genebank using 11,722 SNP markers (generated by the Diversity Arrays Technology) and nine agronomic traits. Phylogenetic analyses using hierarchical clustering, admixture, kinship, and Discriminant analysis of principal component (DAPC) all assigned the accessions into four main clusters. Genetic diversity assessment using molecular-based SNP markers showed a high proportion of polymorphic SNPs (87.81%). The analysis of molecular variance (AMOVA) showed low molecular variability within genetic groups. In addition, the agronomic traits evaluated for two years in field conditions showed a high heritability and high variability among D. alata accessions. This study provides insights into the genetic diversity among accessions in the CNRA genebank and opens an avenue for sustainable resource management and the identification of promising parental clones for water yam breeding programs in Côte d'Ivoire.

3.
Genes (Basel) ; 11(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32906687

ABSTRACT

Genetic adaptation of maize to the increasingly unpredictable climatic conditions is an essential prerequisite for achievement of food security and sustainable development goals in sub-Saharan Africa. The landraces of maize; which have not served as sources of improved germplasm; are invaluable sources of novel genetic variability crucial for achieving this objective. The overall goal of this study was to assess the genetic diversity and population structure of a maize panel of 208 accessions; comprising landrace gene pools from Burkina Faso (58), Ghana (43), and Togo (89), together with reference populations (18) from the maize improvement program of the International Institute of Tropical Agriculture (IITA). Genotyping the maize panel with 5974 DArTseq-SNP markers revealed immense genetic diversity indicated by average expected heterozygosity (0.36), observed heterozygosity (0.5), and polymorphic information content (0.29). Model-based population structure; neighbor-joining tree; discriminant analysis of principal component; and principal coordinate analyses all separated the maize panel into three major sub-populations; each capable of providing a wide range of allelic variation. Analysis of molecular variance (AMOVA) showed that 86% of the variation was within individuals; while 14% was attributable to differences among gene pools. The Burkinabe gene pool was strongly differentiated from all the others (genetic differentiation values >0.20), with no gene flow (Nm) to the reference populations (Nm = 0.98). Thus; this gene pool could be a target for novel genetic variation for maize improvement. The results of the present study confirmed the potential of this maize panel as an invaluable genetic resource for future design of association mapping studies to speed-up the introgression of this novel variation into the existing breeding pipelines.


Subject(s)
Adaptation, Physiological , Gene Flow , Genetic Enhancement , Genetic Markers , Genetic Variation , Plant Breeding/methods , Zea mays/genetics , Genome, Plant , Phylogeny , Zea mays/classification
4.
Pathog Glob Health ; 113(3): 133-142, 2019 05.
Article in English | MEDLINE | ID: mdl-31144611

ABSTRACT

Asymptomatic carriers of Plasmodium are considered a reservoir of the parasite in humans. Therefore, in order to be effective, new malaria elimination strategies must take these targets into account. The aim of this study was to analyse genetic diversity of Plasmodium falciparum among schoolchildren in three epidemiological areas in Côte d'Ivoire. This was a cross-sectional study carried out from May 2015 to April 2016 in a primary school in rural and urban areas of San Pedro, Grand-Bassam and Abengourou, during the rainy season and the dry season. A total of 282 Plasmodium falciparum isolates were genotyped using Nested PCR of Pfmsp1 and Pfmsp2 genes. The overall frequency of K1, Mad20 and RO33 alleles was 81.6%, 53.4% and 57% for Pfmsp1 respectively. For Pfmsp2, this frequency was 84.3% and 72.2% for 3D7 and FC27. K1, Mad20 and FC27 Frequencies were significantly higher in Abengourou compared to other sites. Overall, the frequency of MIs was significantly higher in Abengourou for Pfmsp1 and Pfmsp2. However, Mad20 and RO33 alleles were significantly higher in the rainy season. No significant difference was observed between Pfmsp2 alleles in both seasons. Frequency of the 3D7 allele was significantly higher in symptomatic patients. MIs and COI increased with parasitemia for Pfmsp1and Pfmsp2. The data can be added to that available for monitoring and control of P. falciparum malaria. Further studies combining the entomological inoculation rate and the genetic diversity of P. falciparum will allow us to shed light on our understanding of the epidemiology of this parasite.


Subject(s)
Carrier State/parasitology , Genetic Variation , Genotype , Malaria, Falciparum/parasitology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Adolescent , Antigens, Protozoan/genetics , Carrier State/epidemiology , Child , Child, Preschool , Cote d'Ivoire/epidemiology , Cross-Sectional Studies , Female , Genotyping Techniques , Humans , Malaria, Falciparum/epidemiology , Male , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Rural Population , Schools , Seasons , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...