Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 6(3): 707-15, 2016 02.
Article in English | MEDLINE | ID: mdl-26865959

ABSTRACT

Non-native invasive species are a major threat to biodiversity, especially in freshwater ecosystems. Freshwater ecosystems are naturally rather isolated from one another. Nonetheless, invasive species often spread rapidly across water sheds. This spread is to a large extent realized by human activities that provide vectors. For example, recreational boats can carry invasive species propagules as "aquatic hitch-hikers" within and across water sheds. We used invasive gobies in Switzerland as a case study to test the plausibility that recreational boats can serve as vectors for invasive fish and that fish eggs can serve as propagules. We found that the peak season of boat movements across Switzerland and the goby spawning season overlap temporally. It is thus plausible that goby eggs attached to boats, anchors, or gear may be transported across watersheds. In experimental trials, we found that goby eggs show resistance to physical removal (90 mN attachment strength of individual eggs) and stay attached if exposed to rapid water flow (2.8 m·s(-1)for 1 h). When exposing the eggs to air, we found that hatching success remained high (>95%) even after eggs had been out of water for up to 24 h. It is thus plausible that eggs survive pick up, within-water and overland transport by boats. We complemented the experimental plausibility tests with a survey on how decision makers from inside and outside academia rate the feasibility of managing recreational boats as vectors. We found consensus that an installation of a preventive boat vector management is considered an effective and urgent measure. This study advances our understanding of the potential of recreational boats to serve as vectors for invasive vertebrate species and demonstrates that preventive management of recreational boats is considered feasible by relevant decision makers inside and outside academia.

2.
Ambio ; 45(3): 267-79, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26541873

ABSTRACT

Invasive species are one of the greatest threats to biodiversity worldwide, and to successfully manage their introductions is a major challenge for society. Knowledge on the impacts of an invasive species is essential for motivating decision makers and optimally allocating management resources. We use a prominent invasive fish species, the round goby (Neogobius melanostomus) to objectively quantify the state of scientific knowledge on its impacts. Focusing on how native fish species are affected by round goby invasions, we analyzed 113 peer-reviewed papers and found that impacts are highly ecosystem and time scale dependent. We discovered round goby impacts to be profound, but surprisingly complex. Even if identical native species were affected, the impacts remained less comparable across ecosystems than expected. Acknowledging the breadth but also limitations in scientific knowledge on round goby impacts would greatly improve scientists' ability to conduct further research and inform management measures.


Subject(s)
Fishes , Introduced Species , Animals , Ecosystem , Europe
3.
Ambio ; 45(3): 280-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26541874

ABSTRACT

Managing invasive species is a major challenge for society. In the case of newly established invaders, rapid action is key for a successful management. Here, we develop, describe and recommend a three-step transdisciplinary process (the "butterfly model") to rapidly initiate action for invasion management. In the framing of a case study, we present results from the first of these steps: assessing priorities and contributions of both scientists and decision makers. Both scientists and decision makers prioritise research on prevention. The available scientific knowledge contributions, however, are publications on impacts rather than prevention of the invasive species. The contribution of scientific knowledge does thus not reflect scientists' perception of what is essentially needed. We argue that a more objective assessment and transparent communication of not only decision makers' but also scientists' priorities is an essential basis for a successful cooperation. Our three-step model can help achieve objectivity via transdisciplinary communication.


Subject(s)
Conservation of Natural Resources , Decision Making , Introduced Species , Research , Animals , Communication , Fishes , Models, Theoretical , Science
SELECTION OF CITATIONS
SEARCH DETAIL
...