Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 932: 172759, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38670352

ABSTRACT

In the extreme setting of burning coal-waste dumps in the Upper Silesian Coal Basin in Poland, botryoidal and spherulitic hematite occurs in association with sulphates and chlorides. A series of simple experiments aimed at replicating the conditions leading to the formation of hematite spherules on the burning dumps are described. Goethite synthesised in the laboratory, mixed with various combinations of other reactants, was heated in a heating chamber or a tubular furnace. Temperature, duration of heating, water and oxygen access, and pH were experimental variables. The results show that hematite may form spherules from goethite where access to oxygen is limited and where conditions are strongly acidic. The spherulitic shape of hematite produced due to dynamically changing physicochemical conditions in the burning dumps can be an indicator of an extremely acidic environment during the closing stages of coal-waste self-heating. The conditions of hematitic-spherule formation on burning coal-waste dumps may apply in a variety of other unrelated settings, e.g., waning volcanism, sulphuric acid speleologenesis and even the formation of blueberries on Mars.

2.
Article in English | MEDLINE | ID: mdl-35954523

ABSTRACT

As an anthropogenic element of urban landscapes, coal heaps undergo changes due to both natural and anthropogenic factors. The aim of this study was to determine the common development of soil under the influence of vegetation succession against a background of environmental conditions. Vegetation changes and soil properties were analysed along a transect passing through a heap representing a particular succession stage. It was found that changes in the development of vegetation were closely related to the stages of coal-waste disposal, where the initial, transitional, and terminal stages were distinguished. The mean range of pH (H2O) values in the profiles was 6.75 ± 0.21 (profile 1), 7.2 ± 0.31 (profile 2), 6.3 ± 1.22 (profile 3), and 5.38 ± 0.42 (profile 4). The organic carbon (OC) content in all samples was high, ranging from 9.6% to 41.6%. The highest content of total nitrogen (Nt) was found (1.132%) in the algal crust and sub-horizon of the organic horizon (Olfh-0.751%) and humus (A-0.884) horizon in profile 3 under the initial forest. Notable contents of available elements were found in the algal shell for P (1588 mg∙kg-1) and Mg (670 mg∙kg-1). Soil organic matter content was mainly dominated by n-alkanes (n-C11-n-C34) and alkanoic acids (C5-C20). Phytene and Phytadiene were typical for the algal crust on the initial pedigree. The initiation of succession was determined by the variation in grain size of the waste dumped on the heap and the variation in relief and associated habitat mosaic. Algal crusts forming on clay-dust mineral and organic material accumulating in the depressions of the site and at the foot of the heap can be regarded as the focus of pedogenesis.


Subject(s)
Coal , Soil , Forests , Poland , Soil/chemistry , Waste Disposal Facilities
3.
J Hazard Mater ; 431: 128542, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35248960

ABSTRACT

This study aims to provide numerous environmental research approaches to understand the formation of mineral and organic mercury compounds in self-heating coal waste dumps of the Upper Silesian Coal Basin (USCB). The results are combined with environmental and health risk assessments. The mineralogy comprised accessory minerals in the fine fraction of thermally affected waste, i.e., Hg sulfides, most likely cinnabar or metacinnabar. Moreover, other metals, e.g., Pb, Zn and Cu, were found as sulfide forms. Apart from Hg, the ICP-ES/MS data confirmed the high content of Mn, Zn, Pb, Hg, Cr and Ba in these wastes. The high concentration of available Hg resulted in elevated MeHg concentrations in the dumps. There were no correlations or trends between MeHg concentrations and elemental Hg, TS, TOC, and pH. Furthermore, we did not detect microbial genes responsible for Hg methylation. The organic compounds identified in waste and emitted gases, such as organic acids, or free methyl radicals, common in such burn environments, could be responsible for the formation of MeHg. The concentration levels of gases, e.g., benzene, formaldehyde, NH3, emitted by the vents, reached or surpassed acceptable levels numerous times. The potential ecological and human health risks of these dumps were moderate to very high due to the significant influence of the high Hg concentrations.


Subject(s)
Coal Mining , Mercury , Coal , Environmental Monitoring , Gases , Humans , Lead , Mercury/analysis , Mining , Poland , Waste Disposal Facilities
4.
J Hazard Mater ; 412: 125244, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33951867

ABSTRACT

This study provides potential insight between self-heating coal-waste dumps and related environmental pollution in southern Poland. Samples collected from dumps in the Upper Silesian Coal Basin were used to quantify released contents of organic- and inorganic pollutants, i.e., polycyclic aromatic hydrocarbons (PAHs) and trace elements (Pb, Cd, Cr, Cu, Zn, Ni, Hg, As). Elevated Hg concentrations (~100-1078 mg/kg) and Pb (~600-2000 mg/kg) attest to the evaporation of these metals from deeper parts of the dumps. The acidic pH levels (3.0-4.5) may help to mobilize these elements. Pearson's correlation coefficients for samples analyzed by AAS and ICP-MS indicate a similar origin for Cd, Zn, and As. Mostly 2- and 3-ring PAHs, especially anthracene in burnt soil, dominate in the samples. Chlorinated PAHs, thiophenol, pyridines, quinolines (and derivatives) in thermally-altered samples, and waste containing pyrolytic bitumen indicate coking conditions. The high levels of Hg, Pb, and Cd, and chlorinated PAHs and nitrogen heterocycles formed or enriched during self-heating in these dumps should be deemed a significant environmental hazard. Calculating the lifetime cancer risks due to PAHs and heavy metals accumulations in the dumps are substantial, and access to these dumps should be prohibited.

6.
Environ Sci Pollut Res Int ; 27(8): 8285-8307, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31900771

ABSTRACT

Self-heating occurring was studied in the Bytom coal-waste dump using petrographic, mineralogical, and organic geochemical to assess the changes induced by heating on organic material and quantify-qualify the emitted gases. The distribution of geochemical markers such as n-alkanes, alkylbenzenes, alkylcyclohexanes, phenols, sulfurous compounds, and emitted gases in the waste dump is outlined. Heating of organic material there is indicated by high vitrinite random reflectance (Rr)% values that typically characterize samples with short-chain n-alkanes, alkylbenzenes, and alkylmethylbenzenes. Contents of minerals showing minor alterations are high with ~ 90% in burned-out samples. Inside the dump where temperatures can reach up to 700-1300 °C and oxygen contents are significantly reduced, conditions favor coking. This situation is confirmed by the formation of enormous quantities of phenols and alkylbenzenes or by elevated amounts of H2 formed under low-oxygen conditions (pyrolysis). Aromatization, pyrolysis (thermal cracking), and oxidation are associated with the heating in the dump. Gases such as methane, ethane, propane, and ethylene formed during self-heating can serve as fuel for the fire inside the dump, in the process generating huge amounts of CO2.


Subject(s)
Coal , Heating , Coal/analysis , Oxygen/chemistry , Poland , Waste Disposal Facilities
7.
Environ Geochem Health ; 41(2): 575-601, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30043325

ABSTRACT

Gaseous emissions from seven self-heating coal waste dumps in two large coal mining basins, Upper and Lower Silesia (Poland), were investigated by gas chromatography (GC-FID/TCD), and the results were correlated with on-site thermal activity, stage of self-heating as assessed by thermal mapping, efflorescences, and surface and subsurface temperatures. Though typical gases at sites without thermal activity are dominated by atmospheric nitrogen and oxygen, methane and carbon dioxide are present in concentrations that many times exceed atmospheric values. On average, their concentrations are 42.7-7160 ppm, respectively. These are levels considered harmful to health and show that coal waste fire can be dangerous for some years after extinction. At thermally active sites, concentrations of CH4 and CO2 are much higher and reach 5640-51,976 ppm (aver.), respectively. A good substrate-product correlation between CO2 and CH4 concentrations indicates rapid in-dump CH4 oxidation with only insignificant amounts of CO formed. Other gas components include hydrogen, and C3-C6 saturated and unsaturated hydrocarbons. Decreasing oxygen content in the gases is temperature-dependent, and O2 removal rapidly increased at > 70 °C. Emission differences between both basins are minor and most probably reflect the higher maturity of coal waste organic matter in the Lower Silesia dumps causing its higher resistance to temperature, or/and a higher degree of overburning there.


Subject(s)
Gases/analysis , Refuse Disposal/methods , Air Pollutants/analysis , Carbon Dioxide/analysis , Chromatography, Gas , Coal , Heating , Methane/analysis , Nitrogen/analysis , Oxygen/analysis , Poland , Temperature , Waste Disposal Facilities
8.
Sci Total Environ ; 628-629: 1462-1488, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045566

ABSTRACT

In this study, a large sample set (276) was separated into up to 15 groups, including coal, fly ash, total particulate matter, coal wastes, river sediments, and different water types. Grouping the sample set into these categories helped to identify the typical features of combustion or water-washing and compare them using newly developed polycyclic aromatic hydrocarbon diagnostic ratios. A wide range of organic pollutants were identified in samples, including aromatic and polycyclic hydrocarbons, nitrogen-heterocycles, sulphur-heterocycles + trithiolane, and polycyclic aromatic hydrocarbons substituted with oxygen functional groups. The distribution of compounds was significantly influenced by water washing or combustion. During the self-heating of coal wastes, secondary compounds such as chlorinated aromatics (chlorobenzene, chloroanthracene, etc.) or light sulphur compounds (e.g. benzenethiol and benzo[b]thiophene) were formed (synthesised). Since these compounds are generally absent in sedimentary organic matter, their origin may be connected with high-temperature formation in burning coal dumps. These compounds should be identified as persistent organic pollutants (POPs) in the environment. The newly defined diagnostic ratios have worked well in separating samples (petrogenic and pyrogenic) and have pointed out the effect of incomplete combustion on self-heated coal waste, ash from domestic furnaces, or water washing and biodegradation of the studied compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...