Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 9: 866667, 2022.
Article in English | MEDLINE | ID: mdl-35573013

ABSTRACT

Objective: Veno-venous extracorporeal membrane oxygenation (vv-ECMO) can save lives in severe respiratory distress, but this innovative approach has serious side-effects and is accompanied by higher rates of iatrogenic morbidity. Our aims were, first, to establish a large animal model of vv-ECMO to study the pathomechanism of complications within a clinically relevant time frame and, second, to investigate renal reactions to increase the likelihood of identifying novel targets and to improve clinical outcomes of vv-ECMO-induced acute kidney injury (AKI). Methods: Anesthetized Vietnamese miniature pigs were used. After cannulation of the right jugular and femoral veins, vv-ECMO was started and maintained for 24 hrs. In Group 1 (n = 6) ECMO was followed by a further 6-hr post-ECMO period, while (n = 6) cannulation was performed without ECMO in the control group, with observation maintained for 30 h. Systemic hemodynamics, blood gas values and hour diuresis were monitored. Renal artery flow (RAF) was measured in the post-ECMO period with an ultrasonic flowmeter. At the end of the experiments, renal tissue samples were taken for histology to measure myeloperoxidase (MPO) and xanthine oxidoreductase (XOR) activity and to examine mitochondrial function with high-resolution respirometry (HRR, Oroboros, Austria). Plasma and urine samples were collected every 6 hrs to determine neutrophil gelatinase-associated lipocalin (NGAL) concentrations. Results: During the post-ECMO period, RAF dropped (96.3 ± 21 vs. 223.6 ± 32 ml/min) and, similarly, hour diuresis was significantly lower as compared to the control group (3.25 ± 0.4 ml/h/kg vs. 4.83 ± 0.6 ml/h/kg). Renal histology demonstrated significant structural damage characteristic of ischemic injury in the tubular system. In the vv-ECMO group NGAL levels, rose significantly in both urine (4.24 ± 0.25 vs. 2.57 ± 0.26 ng/ml) and plasma samples (4.67 ± 0.1 vs. 3.22 ± 0.2 ng/ml), while tissue XOR (5.88 ± 0.8 vs. 2.57 ± 0.2 pmol/min/mg protein) and MPO (11.93 ± 2.5 vs. 4.34 ± 0.6 mU/mg protein) activity was elevated. HRR showed renal mitochondrial dysfunction, including a significant drop in complex-I-dependent oxidative capacity (174.93 ± 12.7 vs. 249 ± 30.07 pmol/s/ml). Conclusion: Significantly decreased renal function with signs of structural damage and impaired mitochondrial function developed in the vv-ECMO group. The vv-ECMO-induced acute renal impairment in this 30-hr research protocol provides a good basis to study the pathomechanism, biomarker combinations or possible therapeutic possibilities for AKI.

2.
Front Immunol ; 12: 717157, 2021.
Article in English | MEDLINE | ID: mdl-34475875

ABSTRACT

Background and Aims: The systemic host response in sepsis is frequently accompanied by central nervous system (CNS) dysfunction. Evidence suggests that excessive formation of neutrophil extracellular traps (NETs) can increase the permeability of the blood-brain barrier (BBB) and that the evolving mitochondrial damage may contribute to the pathogenesis of sepsis-associated encephalopathy. Kynurenic acid (KYNA), a metabolite of tryptophan catabolism, exerts pleiotropic cell-protective effects under pro-inflammatory conditions. Our aim was to investigate whether exogenous KYNA or its synthetic analogues SZR-72 and SZR-104 affect BBB permeability secondary to NET formation and influence cerebral mitochondrial disturbances in a clinically relevant rodent model of intraabdominal sepsis. Methods: Sprague-Dawley rats were subjected to fecal peritonitis (0.6 g kg-1 ip) or a sham operation. Septic animals were treated with saline or KYNA, SZR-72 or SZR-104 (160 µmol kg-1 each ip) 16h and 22h after induction. Invasive monitoring was performed on anesthetized animals to evaluate respiratory, cardiovascular, renal, hepatic and metabolic parameters to calculate rat organ failure assessment (ROFA) scores. NET components (citrullinated histone H3 (CitH3); myeloperoxidase (MPO)) and the NET inducer IL-1ß, as well as IL-6 and a brain injury marker (S100B) were detected from plasma samples. After 24h, leukocyte infiltration (tissue MPO) and mitochondrial complex I- and II-linked (CI-CII) oxidative phosphorylation (OXPHOS) were evaluated. In a separate series, Evans Blue extravasation and the edema index were used to assess BBB permeability in the same regions. Results: Sepsis was characterized by significantly elevated ROFA scores, while the increased BBB permeability and plasma S100B levels demonstrated brain damage. Plasma levels of CitH3, MPO and IL-1ß were elevated in sepsis but were ameliorated by KYNA and its synthetic analogues. The sepsis-induced deterioration in tissue CI-CII-linked OXPHOS and BBB parameters as well as the increase in tissue MPO content were positively affected by KYNA/KYNA analogues. Conclusion: This study is the first to report that KYNA and KYNA analogues are potential neuroprotective agents in experimental sepsis. The proposed mechanistic steps involve reduced peripheral NET formation, lowered BBB permeability changes and alleviation of mitochondrial dysfunction in the CNS.


Subject(s)
Kynurenic Acid/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Neutrophil Activation/drug effects , Neutrophil Activation/immunology , Sepsis/metabolism , Animals , Blood-Brain Barrier/metabolism , Disease Models, Animal , Kynurenic Acid/analogs & derivatives , Kynurenic Acid/chemical synthesis , Male , Permeability , Rats , Sepsis/drug therapy , Sepsis/etiology , Sepsis/pathology
3.
Front Cell Dev Biol ; 9: 824749, 2021.
Article in English | MEDLINE | ID: mdl-35071248

ABSTRACT

A number of studies have demonstrated explicit bioactivity for exogenous methane (CH4), even though it is conventionally considered as physiologically inert. Other reports cited in this review have demonstrated that inhaled, normoxic air-CH4 mixtures can modulate the in vivo pathways involved in oxidative and nitrosative stress responses and key events of mitochondrial respiration and apoptosis. The overview is divided into two parts, the first being devoted to a brief review of the effects of biologically important gases in the context of hypoxia, while the second part deals with CH4 bioactivity. Finally, the consequence of exogenous, normoxic CH4 administration is discussed under experimental hypoxia- or ischaemia-linked conditions and in interactions between CH4 and other biological gases, with a special emphasis on its versatile effects demonstrated in pulmonary pathologies.

4.
Sci Rep ; 9(1): 19229, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848391

ABSTRACT

Our aim was to develop a method to detect extramitochondrial Ca2+ movement and O2 fluxes simultaneously. Using High-Resolution FluoRespirometry, we also tested whether mitochondrial permeability transition pore (mPTP) inhibition or anoxia affects the mitochondrial Ca2+ flux. Ca2+ movement evoked by CaCl2 or anoxia was assessed with CaGreen-5N dye using Blue-Fluorescence-Sensor in isolated liver mitochondria, liver homogenates and duodenal biopsies. Exogenous CaCl2 (50 µM) resulted in an abrupt elevation in CaGreen-5N fluorescence followed by a decrease (Ca2+ uptake) with simultaneous elevation in O2 consumption in liver preparations. This was followed by a rapid increase in the fluorescence signal, reaching a higher intensity (Ca2+ efflux) than that of the initial CaCl2-induced elevation. Chelation of Ca2+ with EGTA completely abolished the fluorescence of the indicator. After pre-incubation with cyclosporin A, a marked delay in Ca2+ movement was observed, not only in isolated liver mitochondria, but also in tissue homogenates. In all samples, the transition to anoxia resulted in immediate increase in the level of extramitochondrial Ca2+. The results demonstrate that the CaGreen-5N method is suitable to monitor simultaneous O2 and Ca2+ fluxes, and the opening of mPTP in various biological samples. In this system the duration of stimulated Ca2+ fluxes may provide a novel parameter to evaluate the efficacy of mPTP blocker compounds.


Subject(s)
Calcium Signaling , Calcium/metabolism , Mitochondria, Liver/metabolism , Oxygen Consumption , Animals , Fluorescent Dyes/chemistry , Male , Mice , Mice, Hairless , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Rats , Rats, Sprague-Dawley
5.
Free Radic Biol Med ; 120: 160-169, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29550332

ABSTRACT

Our aim was to characterize the main components of the nitrosative response with quantitative changes of the nitrergic myenteric neurons in adjacent intestinal segments after transient superior mesenteric artery occlusion. We also tested the hypothesis that exogenous methane may modulate the evolution of nitroxidation by influencing xanthine oxidoreductase (XOR) activity. The microcirculatory consequences of a 50 min ischemia or ischemia-reperfusion were investigated in anesthetized rats (n = 124) inhaling normoxic air with or without 2.2% methane. XOR activities, nitrogen monoxide (NO), nitrite/nitrate (NOx), and nitrotyrosine levels were measured, together with relative nitrergic neuron ratios from duodenum, ileum and colon samples. The effects of methane on XOR were also examined in vitro. The intramural flow stopped only in the ileum during ischemia. The highest baseline XOR activity was found in the duodenum, which increased further during ischemia. NO and nitrotyrosine levels rose, and the nNOS-immunopositive neuron ratio and NOx level both dropped. Reperfusion uniformly elevated XOR activity and nitrotyrosine formation, with the highest level attained in the duodenum, where the nitrergic neuron ratio remained depressed. These alterations were eliminated in methane-treated animals, XOR activity and nitrotyrosine formation decreased in all sites, and the duodenal nitrergic neuron ratio was re-established. The inhibitory effect of methane on XOR-linked nitrate reductase activity was also demonstrated in vitro. With segment-specific microcirculatory alterations, the risk for nitrosative stress is highest in transiently hypoxic tissues with high endogenous XOR activities. The XOR-inhibitory effect of methane can reduce nitroxidation and protects the nitrergic neuron population in such conditions.


Subject(s)
Mesenteric Ischemia/enzymology , Methane/pharmacology , Neuroprotective Agents/pharmacology , Nitrosative Stress/drug effects , Xanthine Dehydrogenase/antagonists & inhibitors , Animals , Disease Models, Animal , Male , Myenteric Plexus/drug effects , Rats , Rats, Sprague-Dawley , Reperfusion Injury/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...