Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 19(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356818

ABSTRACT

In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.


Subject(s)
Bivalvia , Environmental Monitoring , Marine Toxins/chemistry , Oxocins/chemistry , Animals , Aquatic Organisms , France , Mediterranean Sea , Seafood
2.
Harmful Algae ; 98: 101902, 2020 09.
Article in English | MEDLINE | ID: mdl-33129459

ABSTRACT

A recently published study analyzed the phylogenetic relationship between the genera Centrodinium and Alexandrium, confirming an earlier publication showing the genus Alexandrium as paraphyletic. This most recent manuscript retained the genus Alexandrium, introduced a new genus Episemicolon, resurrected two genera, Gessnerium and Protogonyaulax, and stated that: "The polyphyly [sic] of Alexandrium is solved with the split into four genera". However, these reintroduced taxa were not based on monophyletic groups. Therefore this work, if accepted, would result in replacing a single paraphyletic taxon with several non-monophyletic ones. The morphological data presented for genus characterization also do not convincingly support taxa delimitations. The combination of weak molecular phylogenetics and the lack of diagnostic traits (i.e., autapomorphies) render the applicability of the concept of limited use. The proposal to split the genus Alexandrium on the basis of our current knowledge is rejected herein. The aim here is not to present an alternative analysis and revision, but to maintain Alexandrium. A better constructed and more phylogenetically accurate revision can and should wait until more complete evidence becomes available and there is a strong reason to revise the genus Alexandrium. The reasons are explained in detail by a review of the available molecular and morphological data for species of the genera Alexandrium and Centrodinium. In addition, cyst morphology and chemotaxonomy are discussed, and the need for integrative taxonomy is highlighted.


Subject(s)
Dinoflagellida , Phylogeny
3.
Protist ; 171(5): 125759, 2020 11.
Article in English | MEDLINE | ID: mdl-33126019

ABSTRACT

In the current circumscription, the Thoracosphaeraceae comprise all dinophytes exhibiting calcified coccoid cells produced during their life-history. Species hitherto assigned to Ensiculifera and Pentapharsodinium are mostly based on the monadoid stage of life-history, while the link to the coccoid stage (occasionally treated taxonomically distinct) is not always resolved. We investigated the different life-history stages and DNA sequence data of Ensiculifera mexicana and other species occurring in samples collected from all over the world. Based on concatenated ribosomal RNA gene sequences Ensiculiferaceae represented a distinct peridinalean branch, which showed a distant relationship to other calcareous dinophytes. Both molecular and morphological data (particularly of the coccoid stage) revealed the presence of three distinct clades within Ensiculiferaceae, which may include other dinophytes exhibiting a parasitic life-history stage. At a higher taxonomic level, Ensiculiferaceae showed relationships to parasites and endosymbionts (i.e., Blastodinium and Zooxanthella) as well as to dinophytes harbouring diatoms instead of chloroplasts. These unexpected phylogenetic relationships are corroborated by the presence of five cingular plates in all such taxa, which differs from the six cingular plates of most other Thoracosphaeraceae. We herein describe Ensiculiferaceae, emend the descriptions of Ensiculifera and Pentapharsodinium, erect Matsuokaea and provide several new combinations at the species level.


Subject(s)
Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Diatoms/physiology , Dinoflagellida/parasitology , Species Specificity , Symbiosis
4.
Protist ; 170(2): 168-186, 2019 04.
Article in English | MEDLINE | ID: mdl-31031223

ABSTRACT

Investigation of phytoplankton from East China Sea of the Pacific Ocean, offshore Réunion Island of the Indian Ocean, and the French Atlantic coast revealed a species of poorly known armored fusiform dinoflagellate. To clarify this species, morphology and phylogeny based on mitochondrial and nuclear protein gene sequence (Cox1, Cob and Hsp90) concatenated with the SSU, ITS region and LSU rDNA sequences were analysed. Epifluorescence and scanning electron microscopy observations revealed that the nucleus of the specimen was elongated, sausage-shaped and located equatorially on the left lateral side of the cell, and that the plate formula is Po, 3', 1a, 6″, 6C, 8S, 5‴, 1p, 2'‴. These morphological features indicate that the species can be assigned to Centrodinium punctatum. Interestingly, the phylogenetic analyses placed this species within the Alexandrium clade, with Alexandrium affine being its closest relative. This indicates that genus Alexandrium is not monophyletic. The most similar morphological traits between C. punctatum and Alexandrium species were the shape of apical pore plate and the arrangement of the sulcal plates. However, since there are significant morphological differences between C. punctatum and Alexandrium species, further studies are needed to clarify the relation between the morphology and molecular phylogeny of other Centrodinium-related fusiform species.


Subject(s)
Alveolata/classification , Phylogeny , Alveolata/cytology , Alveolata/genetics , DNA, Protozoan/genetics , Species Specificity
5.
Front Microbiol ; 9: 2918, 2018.
Article in English | MEDLINE | ID: mdl-30559730

ABSTRACT

Parasites are key drivers of phytoplankton bloom dynamics and related aquatic ecosystem processes. Yet, the dearth of morphological and molecular information hinders the assessment of their diversity and ecological role. Using single-cell techniques, we characterise morphologically and molecularly, intracellular parasitoids infecting four potentially toxin-producing Pseudo-nitzschia and one Melosira species on the North Atlantic coast. These sequences define two, morphologically indistinguishable clades within the phylum Oomycota, related to the genera of algal parasites Anisolpidium and Olpidiopsis and the diatom parasitoid species Miracula helgolandica. Our morphological data are insufficient to attribute either clade to the still unsequenced genus Ectrogella; hence it is proposed to name the clades OOM_1 and OOM_2. A screening of global databases of the barcode regions V4 and V9 of the 18S rDNA demonstrate the presence of these parasitoids beyond the North Atlantic coastal region. During a biweekly metabarcoding survey (Concarneau Bay, France), reads associated with one sequenced parasitoid coincided with the decline of Cerataulina pelagica bloom, whilst the other parasitoids co-occurred at low abundance with Pseudo-nitzschia. Our data highlight a complex and unexplored diversity of the oomycete parasitoids of diatoms and calls for the investigation of their phenology, evolution, and potential contribution in controlling their host spatial-temporal dynamics.

6.
Harmful Algae ; 71: 57-77, 2018 01.
Article in English | MEDLINE | ID: mdl-29306397

ABSTRACT

Strains of a dinoflagellate from the Salton Sea, previously identified as Protoceratium reticulatum and yessotoxin producing, have been reexamined morphologically and genetically and Pentaplacodinium saltonense n. gen. et sp. is erected to accommodate this species. Pentaplacodinium saltonense differs from Protoceratium reticulatum (Claparède et Lachmann 1859) Bütschli 1885 in the number of precingular plates (five vs. six), cingular displacement (two widths vs. one), and distinct cyst morphology. Incubation experiments (excystment and encystment) show that the resting cyst of Pentaplacodinium saltonense is morphologically most similar to the cyst-defined species Operculodinium israelianum (Rossignol, 1962) Wall (1967) and O. psilatum Wall (1967). Collections of comparative material from around the globe (including Protoceratium reticulatum and the genus Ceratocorys) and single cell PCR were used to clarify molecular phylogenies. Variable regions in the LSU (three new sequences), SSU (12 new sequences) and intergenic ITS 1-2 (14 new sequences) were obtained. These show that Pentaplacodinium saltonense and Protoceratium reticulatum form two distinct clades. Pentaplacodinium saltonense forms a monophyletic clade with several unidentified strains from Malaysia. LSU and SSU rDNA sequences of three species of Ceratocorys (C. armata, C. gourreti, C. horrida) from the Mediterranean and several other unidentified strains from Malaysia form a well-supported sister clade. The unique phylogenetic position of an unidentified strain from Hawaii is also documented and requires further examination. In addition, based on the V9 SSU topology (bootstrap values >80%), specimens from Elands Bay (South Africa), originally described as Gonyaulax grindleyi by Reinecke (1967), cluster with Protoceratium reticulatum. The known range of Pentaplacodinium saltonense is tropical to subtropical, and its cyst is recorded as a fossil in upper Cenozoic sediments. Protoceratium reticulatum and Pentaplacodinium saltonense seem to inhabit different niches: motile stages of these dinoflagellates have not been found in the same plankton sample.


Subject(s)
Dinoflagellida/classification , California , DNA, Algal/analysis , DNA, Protozoan/analysis , DNA, Ribosomal , Dinoflagellida/genetics , Dinoflagellida/ultrastructure , Genes, Protozoan , Microscopy, Electron, Scanning , Phylogeny , Sequence Analysis, DNA
7.
J Phycol ; 53(6): 1193-1205, 2017 12.
Article in English | MEDLINE | ID: mdl-28865145

ABSTRACT

The resting cysts of the benthic dinoflagellate Prorocentrum leve from a natural reservoir in Gujan-Mestras (Gironde, France) were described in this study. The incubated urn-shaped cysts gave rise to cells of P. leve. Morphological observations through light microscopy and scanning electron microscopy, particularly of the periflagellar platelets, combined with large subunit ribosomal DNA sequences obtained through single-cell analysis confirm their affinity to the species P. leve. The cysts were characterized by a specific shape and the presence of an anterior plug. This is the first conclusive evidence for fossilizable resting stages within the Prorocentrales, one of the major orders within the Dinophyceae. Palynological treatments show that the cysts and endospores withstand hydrochloric and hydrofluoric acids. Micro-Fourier transform infrared analysis on single specimens suggests that the composition of the endospore is cellulosic and the cyst wall a more robust, noncellulosic ß-glucan. The spectra overall are similar to other published spectra of resting cysts from autotrophic, planktonic dinoflagellates.


Subject(s)
DNA, Algal/genetics , DNA, Ribosomal/genetics , Dinoflagellida/genetics , Dinoflagellida/isolation & purification , France , Lakes , Phylogeny , Sequence Analysis, DNA
8.
Harmful Algae ; 66: 65-78, 2017 06.
Article in English | MEDLINE | ID: mdl-28602255

ABSTRACT

The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4', 2a, 6'', 6C, 5S, 6''', 2'''', by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC-MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44fgcell-1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.


Subject(s)
Dinoflagellida/classification , Dinoflagellida/genetics , Harmful Algal Bloom , Marine Toxins/analysis , Spiro Compounds/analysis , Atlantic Ocean , China , Chromatography, Liquid , DNA, Algal/analysis , DNA, Intergenic/analysis , DNA, Ribosomal/analysis , Dinoflagellida/chemistry , France , Mediterranean Sea , Phylogeny , Sequence Analysis, DNA , Species Specificity , Tandem Mass Spectrometry
9.
Harmful Algae ; 64: 11-19, 2017 04.
Article in English | MEDLINE | ID: mdl-28427568

ABSTRACT

The factors responsible for inducing the synthesis of toxins and responses from toxic phytoplankton blooms remain unclear. In this study we compare the influence of genotypic (at both the intra and interspecific levels) and environmental factors (nutrient concentration and ratio) on growth (in terms of cell densities) and domoic acid (DA) production in three Pseudo-nitzschia species: P. australis, P.pungens and P.fradulenta. A strong phosphate effect was detected. More precisely, a low initial concentration in phosphate, even at high initial nitrogen and silicate concentrations, induced the highest DA concentrations and the lowest cell densities in all strains/species studied. In contrast, a low initial concentration of nitrogen and silicate combined, with a higher phosphate concentration resulted in low cell densities, but without high DA production. Inter-species effects were also observed in DA production, where P. australis represented the most toxigenic species of all. Intra-specific variations were only moderate, except for a recently isolated P. australis strain, suggesting the influence of time since isolation on the physiology and DA production of Pseudo-nitzschia species. Overall, the lack of strong interaction between environmental and genotypic factors showed that the various genotypes investigated did not extensively diverge in their ability to respond (in terms of DA production and cell densities) to contrasting nutrient supply.


Subject(s)
Diatoms/growth & development , Diatoms/metabolism , Harmful Algal Bloom , Kainic Acid/analogs & derivatives , Phosphates/metabolism , Diatoms/genetics , Genotype , Kainic Acid/metabolism , Nutrients/metabolism
10.
Toxicon ; 114: 16-27, 2016 May.
Article in English | MEDLINE | ID: mdl-26896635

ABSTRACT

Algal toxins may accumulate in fish and shellfish and thus cause poisoning in consumers of seafood. Such toxins and the algae producing them are regularly surveyed in many countries, including Europe, North America, Japan and others. However, very little is known regards the occurrence of such algae and their toxins in most African countries. This paper reports on a survey of phytoplankton and algal toxins in Nigerian coastal waters. Seawater samples were obtained from four sites for phytoplankton identification, on three occasions between the middle of October 2014 and the end of February 2015 (Bar Beach and Lekki in Lagos State, Port Harcourt in Rivers State and Uyo in Akwa Ibom State). The phytoplankton community was generally dominated by diatoms and cyanobacteria; however several species of dinoflagellates were also identified: Dinophysis caudata, Lingulodinium polyedrum and two benthic species of Prorocentrum. Passive samplers (containing Diaion(®) HP-20 resin) were deployed for several 1-week periods on the same four sites to obtain profiles of algal toxins present in the seawater. Quantifiable amounts of okadaic acid (OA) and pectenotoxin 2 (PTX2), as well as traces of dinophysistoxin 1 (DTX1) were detected at several sites. Highest concentrations (60 ng OA g(-1) HP-20 resin) were found at Lekki and Bar Beach stations, which also had the highest salinities. Non-targeted analysis using full-scan high resolution mass spectrometry showed that algal metabolites differed from site to site and for different sampling occasions. Screening against a marine natural products database indicated the potential presence of cyanobacterial compounds in the water column, which was also consistent with phytoplankton analysis. During this study, the occurrence of the marine dinoflagellate toxins OA and PTX2 has been demonstrated in coastal waters of Nigeria, despite unfavourable environmental conditions, with regards to the low salinities measured. Hence shellfish samples should be monitored in future to assess the risk for public health through accumulation of such toxins in seafood.


Subject(s)
Dinoflagellida/metabolism , Marine Toxins/analysis , Phytoplankton/metabolism , Chromatography, Liquid , Dinoflagellida/ultrastructure , Environmental Monitoring , Furans/analysis , Furans/chemistry , Furans/metabolism , Macrolides , Marine Toxins/chemistry , Mass Spectrometry , Nigeria , Okadaic Acid/analysis , Okadaic Acid/chemistry , Okadaic Acid/metabolism , Phytoplankton/ultrastructure , Pyrans/analysis , Pyrans/chemistry , Pyrans/metabolism
11.
Protist ; 165(4): 417-44, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24908198

ABSTRACT

Some species of the planktonic dinoflagellate genus Azadinium produce azaspiracids (AZAs), a group of lipophilic phycotoxins causing human poisoning after mussel consumption. We describe three new species from the North Atlantic, all of which shared the same Kofoidean plate pattern characteristic for Azadinium: Po, cp, X, 4', 3a, 6″, 6C, 5S, 6'″, 2″″. Azadinium trinitatum sp. nov. was mainly characterized by the presence of an antapical spine and by the position of the ventral pore at the left distal end of the pore plate in a cavity of plate 1'. Azadinium cuneatum sp. nov. had a conspicuously formed first apical plate, which was asymmetrically elongated and tapered on its left lateral side with a ventral pore located at the tip of this elongated 1' plate. Azadinium concinnum sp. nov. was of particular small size (< 10µm) and characterized by an anteriorly elongated anterior sulcal plate and by large and symmetric precingular plates. The ventral pore was located inside the apical pore plate on the cells' right lateral side. Molecular phylogenetics as inferred from concatenated SSU rRNA, ITS, and LSU rRNA sequence data supported the distinctiveness of the three new species. None of the new species produced any known AZAs in measurable amounts.


Subject(s)
Dinoflagellida/cytology , Dinoflagellida/genetics , Dinoflagellida/classification , Dinoflagellida/metabolism , Iceland , Marine Toxins/metabolism , Spiro Compounds/metabolism
12.
Mar Drugs ; 10(2): 477-496, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22412814

ABSTRACT

Dinoflagellates of the genus Ostreopsis are known to cause (often fatal) food poisoning in tropical coastal areas following the accumulation of palytoxin (PLTX) and/or its analogues (PLTX group) in crabs, sea urchins or fish. Ostreopsis spp. occurrence is presently increasing in the northern to north western Mediterranean Sea (Italy, Spain, Greece and France), probably in response to climate change. In France, Ostreopsis. cf. ovata has been associated with toxic events during summer 2006, at Morgiret, off the coast of Marseille, and a specific monitoring has been designed and implemented since 2007. Results from 2008 and 2009 showed that there is a real danger of human poisoning, as these demonstrated bioaccumulation of the PLTX group (PLTX and ovatoxin-a) in both filter-feeding bivalve molluscs (mussels) and herbivorous echinoderms (sea urchins). The total content accumulated in urchins reached 450 µg PLTX eq/kg total flesh (summer 2008). In mussels, the maximum was 230 µg eq PLTX/kg (summer 2009) compared with a maximum of 360 µg found in sea urchins during the same period at the same site. This publication brings together scientific knowledge obtained about the summer development of Ostreopsis spp. in France during 2007, 2008 and 2009.


Subject(s)
Acrylamides/analysis , Dinoflagellida/growth & development , Food Contamination , Foodborne Diseases/prevention & control , Harmful Algal Bloom , Marine Toxins/analysis , Seafood/analysis , Acrylamides/chemistry , Animals , Bivalvia/chemistry , Bivalvia/growth & development , Chromatography, High Pressure Liquid , Cnidarian Venoms , Dinoflagellida/genetics , Environmental Monitoring/methods , France , Limit of Detection , Marine Toxins/chemistry , Mediterranean Sea , Phylogeny , Sea Urchins/chemistry , Sea Urchins/growth & development , Seasons , Shellfish/analysis , Shellfish Poisoning/prevention & control , Species Specificity , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
13.
J Phycol ; 48(4): 925-39, 2012 Aug.
Article in English | MEDLINE | ID: mdl-27009003

ABSTRACT

The systematic position of Amphidoma caudata Halldal within the genus Amphidoma has remained uncertain as a result of its plate formula and the absence of molecular phylogenetic data. Also, this thecate dinoflagellate taxon has been used to designate two distinct morphotypes. The present study aims to clarify the generic affiliation of Amphidoma caudata and the taxonomic value of two different morphotypes M1 and M2. The new examination of the plate formula using SEM showed that it was the same for both morphotypes and that it corresponded to the tabulation of the recent erected genus Azadinium Elbrächter et Tillmann. Morphometric analysis, using cell size, length of apical projection in conjunction with the cell length, and the ratio of horn and spine showed that M1 and M2 formed two distinct groups. These results were supported by a molecular approach, revealing notable differences in the sequences of LSU rDNA and ITS region between these two morphotypes. Phylogenetic analyses inferred either from LSU and combined SSU, ITS region and COI data positioned M1 and M2 in a sister cluster of Azadinium species while Amphidoma languida Tillmann, Salas et Elbrächter, the only species of Amphidoma for which sequence data were available, was situated in a basal position of the Azadinium clade. Thus, we propose the transfer of Amphidoma caudata to the genus Azadinium and, consequently, the rehabilitation of the original tabulation of the genus Amphidoma Stein. To discriminate the two morphotypes, we propose a rank of variety with the following designations: Azadinium caudatum var. caudatum and Azadinium caudatum var. margalefii.

14.
Eur J Protistol ; 45(1): 2-12, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18617376

ABSTRACT

A new species of the genus Fragilidium, F. duplocampanaeforme sp. nov., is described from examinations by LM and SEM. This species has been recorded in summer on the French Atlantic coast, over a number of years. It was never abundant in the plankton and was very often associated with Fragilidium subglobosum, Pyrophacus horologium and also with toxigenic species of the genera Alexandrium and Dinophysis. Phagotrophy of F. duplocampanaeforme on Dinophysis prey is shown, and sexual reproduction is suggested by the observation of gamete-like small forms. The size and the peculiar shape of its cells do not correspond to any known taxon, but the plate arrangement fits the genus Fragilidium. The plate formula is Po, Pc, 4', 8'', 10c, 6s?, 7''', 2"", 1p. A close examination of the plate morphology reveals an apical closing platelet Pc and significant differences from known Fragilidium species. Plate ornamentation is complex. A longitudinal fold and an unusual optional pore are seen on the antapical plate 2"". Other distinctive morphological features are emphasized which discriminate this new species from others of the genus Fragilidium.


Subject(s)
Dinoflagellida/classification , Phagocytosis , Seawater/parasitology , Animals , Atlantic Ocean , Dinoflagellida/isolation & purification , Dinoflagellida/physiology , Dinoflagellida/ultrastructure , France , Microscopy , Microscopy, Electron, Scanning , Species Specificity
15.
Protist ; 153(3): 223-38, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12389812

ABSTRACT

The objectives of this study were 1) to study the genetic diversity of the Alexandrium, Dinophysis and Karenia genera along the French coasts in order to design probes targeting specific DNA regions, and 2) to apply PCR-based detection to detect these three toxic dinoflagellate genera in natural samples. Genetic diversity of these toxic taxa was first studied from either cultures or cells isolated from Lugol-fixed field samples. By this way, partial sequences of the large ribosomal subunit (LSU rDNA) including the variable domains D1 and D2 of A. minutum, Alexandrium species inside the tamarensis complex, the D. acuminata complex and K. mikimotoi were obtained. Next, specific primers were designed for a selection of toxic algae and used during semi-nested PCR detection. This method was tested over a 3-month period on water samples from the Bay of Concarneau (Brittany, France) and on sediment from the Antifer harbor (The English Channel, France). Specificity and sensitivity of this molecular detection were evaluated using the occurrence of target taxa reported by the IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) monitoring network based on conventional microscopic examination. This work presents the first results obtained on the biogeographical distribution of genotypes of these three toxic genera along the French coasts.


Subject(s)
Dinoflagellida/genetics , Dinoflagellida/isolation & purification , Genetic Variation , Polymerase Chain Reaction , Seawater/microbiology , Animals , DNA Primers , DNA, Protozoan/analysis , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , DNA, Ribosomal/genetics , Dinoflagellida/classification , Dinoflagellida/growth & development , France , Marine Toxins/analysis , Marine Toxins/genetics , Phylogeny , Polymerase Chain Reaction/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...