Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 182: 54-66, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38750916

ABSTRACT

Skin tension plays a pivotal role in clinical settings, it affects scarring, wound healing and skin necrosis. Despite its importance, there is no widely accepted method for assessing in vivo skin tension or its natural pre-stretch. This study aims to utilise modern machine learning (ML) methods to develop a model that uses non-invasive measurements of surface wave speed to predict clinically useful skin properties such as stress and natural pre-stretch. A large dataset consisting of simulated wave propagation experiments was created using a simplified two-dimensional finite element (FE) model. Using this dataset, a sensitivity analysis was performed, highlighting the effect of the material parameters and material model on the Rayleigh and supersonic shear wave speeds. Then, a Gaussian process regression model was trained to solve the ill-posed inverse problem of predicting stress and pre-stretch of skin using measurements of surface wave speed. This model had good predictive performance (R2 = 0.9570) and it was possible to interpolate simplified parametric equations to calculate the stress and pre-stretch. To demonstrate that wave speed measurements could be obtained cheaply and easily, a simple experiment was devised to obtain wave speed measurements from synthetic skin at different values of pre-stretch. These experimental wave speeds agree well with the FE simulations, and a model trained solely on the FE data provided accurate predictions of synthetic skin stiffness. Both the simulated and experimental results provide further evidence that elastic wave measurements coupled with ML models are a viable non-invasive method to determine in vivo skin tension. STATEMENT OF SIGNIFICANCE: To prevent unfavourable patient outcomes from reconstructive surgery, it is necessary to determine relevant subject-specific skin properties. For example, during a skin graft, it is necessary to estimate the pre-stretch of the skin to account for shrinkage upon excision. Existing methods are invasive or rely on the experience of the clinician. Our work aims to present an innovative framework to non-invasively determine in vivo material properties using the speed of a surface wave travelling through the skin. Our findings have implications for the planning of surgical procedures and provides further motivation for the use of elastic wave measurements to determine in vivo material properties.


Subject(s)
Finite Element Analysis , Skin , Stress, Mechanical , Normal Distribution , Humans , Models, Biological , Skin Physiological Phenomena , Machine Learning
2.
J Mech Behav Biomed Mater ; 147: 106090, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717289

ABSTRACT

Understanding of the mechanical properties of skin is crucial in evaluating the performance of skin-interfacing medical devices. Artificial skin models (ASMs) have rapidly gained attention as they are able to overcome the challenges in ethically sourcing consistent and representative ex vivo animal or human tissue models. Although some ASMs have become commercialised, a thorough understanding of the mechanical properties of the skin models is crucial to ensure that they are suitable for the purpose of the study. In the present study, skin and fat layers of ASMs (Simulab®, LifeLike®, SynDaver® and Parafilm®) were mechanically characterised through hardness, needle insertion, tensile and compression testing. Different boundary constraint conditions (minimally and highly constrained) were investigated for needle insertion testing, while anisotropic properties of the skin models were investigated through different specimen orientations during tensile testing. Analysis of variance (ANOVA) tests were performed to compare the mechanical properties between the skin models. Properties of the skin models were compared against literature to determine the suitability of the skin models based on the material property of interest. All skin models offer relatively consistent mechanical performance, providing a solid basis for benchtop evaluation of skin-interfacing medical device performance. Through prioritising models with mechanical properties that are consistent with human skin data, and with limited variance, researchers can use the data presented here as a toolbox to select the most appropriate ASM for their particular application.

3.
Ann Biomed Eng ; 51(8): 1781-1794, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37022652

ABSTRACT

In vivo skin exhibits viscoelastic, hyper-elastic and non-linear characteristics. It is under a constant state of non-equibiaxial tension in its natural configuration and is reinforced with oriented collagen fibers, which gives rise to anisotropic behaviour. Understanding the complex mechanical behaviour of skin has relevance across many sectors including pharmaceuticals, cosmetics and surgery. However, there is a dearth of quality data characterizing the anisotropy of human skin in vivo. The data available in the literature is usually confined to limited population groups and/or limited angular resolution. Here, we used the speed of elastic waves travelling through the skin to obtain measurements from 78 volunteers ranging in age from 3 to 93 years old. Using a Bayesian framework allowed us to analyse the effect that age, gender and level of skin tension have on the skin anisotropy and stiffness. First, we propose a new measurement of anisotropy based on the eccentricity of angular data and conclude that it is a more robust measurement when compared to the classic "anisotropic ratio". Our analysis then concluded that in vivo skin anisotropy increases logarithmically with age, while the skin stiffness increases linearly along the direction of Langer Lines. We also concluded that the gender does not significantly affect the level of skin anisotropy, but it does affect the overall stiffness, with males having stiffer skin on average. Finally, we found that the level of skin tension significantly affects both the anisotropy and stiffness measurements employed here. This indicates that elastic wave measurements may have promising applications in the determination of in vivo skin tension. In contrast to earlier studies, these results represent a comprehensive assessment of the variation of skin anisotropy with age and gender using a sizeable dataset and robust modern statistical analysis. This data has implications for the planning of surgical procedures and questions the adoption of universal cosmetic surgery practices for very young or elderly patients.


Subject(s)
Skin , Sound , Male , Humans , Aged , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , Anisotropy , Bayes Theorem
4.
3D Print Med ; 9(1): 3, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781509

ABSTRACT

BACKGROUND: Custom orthoses are becoming more commonly prescribed for upper and lower limbs. They require some form of shape-capture of the body parts they will be in contact with, which generates an STL file that designers prepare for manufacturing. For larger devices such as custom-contoured wheelchair cushions, the STL created during shape-capture can contain hundreds of thousands of tessellations, making them difficult to alter and prepare for manufacturing using mesh-editing software. This study covers the development and testing of a mesh-to-surface workflow in a parametric computer-aided design software using its visual programming language such that STL files of custom wheelchair cushions can be efficiently converted into a parametric single surface. METHODS: A volunteer in the clinical space with expertise in computer-aided design aided was interviewed to understand and document the current workflow for creating a single surface from an STL file of a custom wheelchair cushion. To understand the user needs of typical clinical workers with little computer-aided design experience, potential end-users of the process were tasked with completing the workflow and providing feedback during the experience. This feedback was used to automate part of the computer-aided design process using a visual programming tool, creating a new semi-automated workflow for mesh-to-surface translation. Both the original and semi-automated process were then evaluated by nine volunteers with varying levels of computer-aided design experience. RESULTS: The semi-automated process showed a 37% reduction in the total number of steps required to convert an STL model to a parametric surface. Regardless of previous computer-aided design experience, volunteers completed the semi-automated workflow 31% faster on average than the manual workflow. CONCLUSIONS: The creation of a semi-automated process for creating a single parametric surface of a custom wheelchair cushion from an STL mesh makes mesh-to-surface conversion more efficient and more user-friendly to all, regardless of computer-aided design experience levels. The steps followed in this study may guide others in the development of their own mesh-to-surface tools in the wheelchair sector, as well as those creating other large custom prosthetic devices.

5.
PLoS One ; 16(4): e0249451, 2021.
Article in English | MEDLINE | ID: mdl-33861736

ABSTRACT

Wormian (intrasutural) bones are small, irregular bones, that are found in the cranial sutures of the skull. The occurrence of Wormian bones in human skulls has been well documented but few studies have detected the presence of such bones in domestic animals. Although some research has linked the presence of Wormian bones to bone pathology, its anatomical significance in healthy individuals is not known. To the best of our knowledge, no previous study has examined the biomechanical features of Wormian bone. This study uses microCT imaging of the parietal bone region to determine the frequency of occurrence of Wormian bones in horse skulls and, through 3-point bending tests, to calculate the mechanical differences that result from the presence of such bones. In addition, bone properties such as bone mineral density (BMD) and stiffness were measured and analysed to determine the influence of Wormian bone. Our findings on 54 specimens taken from 10 horses (ages ranging from 4 to 29 years) showed that Wormian bone was present in 70% of subjects and that its occurrence was unrelated to age or sex. 3-point bend tests revealed that the stiffness normalised by cross section area (P = 0.038) was lower in samples where Wormian bone was present. An idealised Finite Element simulation confirmed that the presence of Wormian bone reduced the maximum stress and strain, as well as their distribution throughout the sample. We consequently conclude that the presence of Wormian bones, which are confined to the calvaria, increase the compliance of the bone and reduce the likelihood of skull fracture. As all skull samples were collected from a local abattoir, ethical approval was not required for this work.


Subject(s)
Disease Resistance , Fractures, Bone/veterinary , Horse Diseases/epidemiology , Skull/injuries , Animals , Fractures, Bone/epidemiology , Horses
6.
Traffic Inj Prev ; 22(1): 51-56, 2021.
Article in English | MEDLINE | ID: mdl-33252249

ABSTRACT

OBJECTIVE: Medical data has lead to the common understanding that bicycle helmets need to be improved to better protect against brain injuries resulting from rotational acceleration. Although many different technologies exist for reducing rotational acceleration during impacts, the lack of an official testing standard means that their evaluation is based on customized set-ups that may differ and not represent real accident conditions. Previously, the authors have shown that scalp tissue plays an important role during helmet testing by absorbing energy and creating a low friction interface between head and helmet, thus reducing rotational accelerations and velocities. However, no published study has yet examined the effectiveness of anti-rotational helmet technologies in the presence of a biofidelic scalp layer. The objective of this study is to address this gap. METHODS: Three different commercially available helmet models, each one equipped with a different technology, were tested in the presence of scalp tissue, in two different scenarios; with and without the technology present. The effectiveness of each of these technologies is already documented in other studies, but only in the absence of a biofidelic scalp layer. Tests were carried out using HIII headform with porcine scalp attached to the outmost layer. Motion tracking was used to compare the impact kinematics of each helmet model in both scenarios. RESULTS: Results showed that when a biofidelic scalp layer is present, there is no statistical difference between helmet models with and without the anti-rotational technology in terms of rotational acceleration, velocity, relative rotation, impact duration and injury risk. CONCLUSIONS: Results suggest that the presence of the scalp can obscure the functionality of anti-rotational acceleration technologies. This could indicate that the effectiveness of technologies tested in previous studies, which have not tested anti-rotational acceleration technologies in the presence of a realistic scalp layer, may exaggerate the contribution of such technologies if compared with a more biofidelic set-up. The study supports the fact that headforms should be better designed by incorporating artificial skin layers that can better imitate scalp's behavior and, in addition, provides insights for the design of technologies against rotational acceleration.


Subject(s)
Bicycling , Head Protective Devices , Scalp , Acceleration , Bicycling/injuries , Brain Injuries/prevention & control , Humans , Rotation , Technology
7.
Article in English | MEDLINE | ID: mdl-32984262

ABSTRACT

The cerebral meninges, made up of the dura, arachnoid, and pia mater, is a tri-layer membrane that surrounds the brain and the spinal cord and has an important function in protecting the brain from injury. Understanding its mechanical behavior is important to ensure the accuracy of finite element (FE) head model simulations which are commonly used in the study of traumatic brain injury (TBI). Mechanical characterization of freshly excised porcine dura-arachnoid mater (DAM) was achieved using uniaxial tensile testing and bulge inflation testing, highlighting the dependency of the identified parameters on the testing method. Experimental data was fit to the Ogden hyperelastic material model with best fit material parameters of µ = 450 ± 190 kPa and α = 16.55 ± 3.16 for uniaxial testing, and µ = 234 ± 193 kPa and α = 8.19 ± 3.29 for bulge inflation testing. The average ultimate tensile strength of the DAM was 6.91 ± 2.00 MPa (uniaxial), and the rupture stress at burst was 2.08 ± 0.41 MPa (inflation). A structural analysis using small angle light scattering (SALS) revealed that while local regions of highly aligned fibers exist, globally, there is no preferred orientation of fibers and the cerebral DAM can be considered to be structurally isotropic. This confirms the results of the uniaxial mechanical testing which found that there was no statistical difference between samples tested in the longitudinal and transversal direction (p = 0.13 for µ, p = 0.87 for α). A finite element simulation of a craniotomy procedure following brain swelling revealed that the mechanical properties of the meninges are important for predicting accurate stress and strain fields in the brain and meninges. Indeed, a simulation using a common linear elastic representation of the meninges was compared to the present material properties (Ogden model) and the intracranial pressure was found to differ by a factor of 3. The current study has provided researchers with primary experimental data on the mechanical behavior of the meninges which will further improve the accuracy of FE head models used in TBI.

8.
Biomech Model Mechanobiol ; 19(1): 275-289, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31396807

ABSTRACT

This study investigates the link between the mechanical properties of skin and its microstructural characteristics. Rat back skin samples from different locations, orientations, and sexes were collected and subjected to quasi-static uniaxial tensile tests. Stress-stretch behavior at low stress ranges and rupture data at high stress ranges were collected. The influence of location, orientation, and sex on skin mechanical properties was examined by comparing the mechanical parameters (i.e., initial slope, maximum slope, ultimate tensile strength, rupture stretch, and toughness) evaluated from the tensile testing data. Location and orientation were both found to have a significant effect on the mechanical properties. Collagen structural data (i.e., fiber orientation distribution, relative content, and fiber straightness) were evaluated using histology images. It was found that the rat lower (caudal) back had higher relative collagen content when compared to the upper (cranial) back. A microstructurally based constitutive model was proposed to describe the mechanical behavior of preconditioned rat back skin. The constitutive model incorporated the distribution of collagen fiber bundle orientations and relative collagen content measured from histology, and showed good agreement with the tensile test data. The influence of location and orientation was also evident in the optimized constitutive parameters. This study was a comprehensive investigation that combines skin mechanical behavior, micro-structure, and constitutive modeling.


Subject(s)
Models, Biological , Skin/anatomy & histology , Animals , Automation , Biomechanical Phenomena , Collagen/metabolism , Female , Male , Probability , Rats, Sprague-Dawley , Stress, Mechanical
9.
J Biomech Eng ; 142(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-31701123

ABSTRACT

The performance of equestrian helmets to protect against brain injuries caused by fall impacts against compliant surfaces such as turf has not been studied widely. We characterize the kinematic response of simulated fall impacts to turf through field tests on horse racetracks and laboratory experiments. The kinematic response characteristics and ground stiffness at different going ratings (GRs) (standard measurement of racetrack condition) were obtained from 1 m and 2 m drop tests of an instrumented hemispherical impactor onto a turf racetrack. The "Hard" rating resulted in higher peak linear accelerations and stiffness, and shorter impact durations than the "Soft" and "Heavy" ratings. Insignificant differences were found among the other GRs, but a strong overall relationship was evident between the "going rating" and the kinematic response. This relationship was used to propose a series of three synthetic foam anvils as turf surrogates in equestrian falls corresponding to ranges of GRs of (i) heavy-soft (H-S), (ii) good-firm (G-F), and (iii) firm-hard (F-H). Laboratory experiments consisted of a helmeted headform being dropped onto natural turf and the turf surrogate anvils using a monorail drop rig. These experiments revealed that the magnitudes and durations of the linear and rotational accelerations for helmeted impacts to turf/turf surrogates were similar to those in concussive sports falls and collisions. Since the compliance of an impacted surface influences the dynamic response of a jockey's head during a fall impact against the ground, it is important that this is considered during both accident reconstructions and helmet certification tests.


Subject(s)
Head Protective Devices , Acceleration , Animals , Biomechanical Phenomena , Brain Concussion , Horses , Sports Equipment
10.
J Mech Behav Biomed Mater ; 100: 103381, 2019 12.
Article in English | MEDLINE | ID: mdl-31430703

ABSTRACT

Several biomedical applications require knowledge of the behaviour of the scalp, including skin grafting, skin expansion and head impact biomechanics. Scalp tissue exhibits a non-linear stress-strain relationship, anisotropy and its mechanical properties depend on strain rate. When modelling the behaviour of the scalp, all these factors should be considered in order to perform realistic simulations. Here, tensile tests at strain rates between 0.005 and 100 s-1 have been conducted on porcine and human scalp in order to investigate the non-linearity, anisotropy, and strain rate dependence of the scalp mechanical properties. The effect of the orientation of the sample with respect to the Skin Tension Lines (STLs) was considered during the test. The results showed that anisotropy is evident in the hyperelastic response at low strain rates (0.005 s-1) but not at higher strain rates (15-100 s-1). The mechanical properties of porcine scalp differ from human scalp. In particular, the elastic modulus and the Ultimate Tensile Strength (UTS) of the porcine scalp were found to be almost twice the values of the human scalp, whereas the stretch at failure was not found to be significantly different. An anisotropic hyperelastic model (Gasser-Ogden-Holzapfel) was used to model the quasi-static behaviour of the tissue, whereas three different isotropic hyperelastic models (Fung, Gent and Ogden) were used to model the behaviour of scalp tissue at higher strain rates. The experimental results outlined here have important implications for those wishing to model the mechanical behaviour of scalp tissue both under quasi-static and dynamic loading conditions.


Subject(s)
Scalp/physiology , Skin Physiological Phenomena , Aged , Aged, 80 and over , Animals , Anisotropy , Biomechanical Phenomena , Computer Simulation , Elastic Modulus , Elasticity , Female , Finite Element Analysis , Humans , Male , Stress, Mechanical , Swine , Temperature , Tensile Strength
11.
Soft Matter ; 15(25): 5147-5153, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31192344

ABSTRACT

We investigate experimentally and model theoretically the mechanical behaviour of brain matter in torsion. Using a strain-controlled rheometer, we perform torsion tests on fresh porcine brain samples. We quantify the torque and the normal force required to twist a cylindrical sample at constant twist rate. Data fitting gives a mean value for the shear modulus of µ = 900 ± 312 Pa and for the second Mooney-Rivlin parameter of c2 = 297 ± 189 Pa, indicative of extreme softness. Our results show that brain always displays a positive Poynting effect; in other words, it expands in the direction perpendicular to the plane of twisting. We validate the experiments with finite element simulations and show that when a human head experiences a twisting motion in the horizontal plane, the brain can experience large forces in the axial direction.


Subject(s)
Brain , Materials Testing , Mechanical Phenomena , Animals , Biomechanical Phenomena , Female , Male , Swine
12.
Prosthet Orthot Int ; 43(4): 382-395, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30895870

ABSTRACT

BACKGROUND: Custom-contoured wheelchair seating lowers risk of pressure injury and postural deterioration while custom-contoured wheelchair seating lowers risk of pressure injury and postural deterioration while increasing the stability and functional activity of the wheelchair occupant. Producing custom-contoured seating systems has historically been a labour-intensive process custom-contoured seating systems is historically labour-intensive. OBJECTIVES: Evaluate the strengths and limitations of current manufacturing processes for custom-contoured wheelchair seating to suggest potential future manufacturing processes. STUDY DESIGN: Literature review of the state of the art. METHODS: Research conducted through a literature review focused on the performance of different types of custom-contoured wheelchair seating products and processes over the last 40 years. Recent literature in orthotics and prosthetics was also consulted to assess future trends in seating. RESULTS: There are five main manufacturing processes currently used to produce custom-contoured wheelchair seating systems. No single process is yet suitable for all wheelchair users, but many manufacturers are transitioning to computer numerical controlled (CNC) milling to reduce manual labour. Adjustable micro-modular seating and moulded seat insert manufacturing are also prevalent and offer alternative seating to soft foam carving. CONCLUSION: There is a need in the custom wheelchair seating sector for processes that are fast, cost-effective, produce little to no material waste, and that can effectively maintain a comfortable seating micro-climate. Additive manufacturing may meet these criteria, but further evaluation is required. CLINICAL RELEVANCE: This review suggests that the custom-contoured wheelchair seating manufacturers are moving away from labour-intensive processes towards digital techniques, like CNC foam milling. Additive manufacturing is a potential new process that may reduce overall costs, the lead time in preparing seats and has the potential to better manage the seating micro-climate.


Subject(s)
Equipment Design , Sitting Position , Wheelchairs , Computer-Aided Design , Humans , Printing, Three-Dimensional
13.
Soft Robot ; 5(6): 726-736, 2018 12.
Article in English | MEDLINE | ID: mdl-30148682

ABSTRACT

This article presents a direct additive manufacturing method for composite material soft pneumatic actuators that are capable of performing a range of programmable motions. Commonly, molding is the method used to manufacture soft fluidic actuators. This is material, labor, and time intensive and lacks the design freedom to produce custom actuators efficiently. This article proposes an alternative semiautomated method of designing and manufacturing composite soft actuators. An affordable, open-source, desktop three-dimensional (3D) printer was modified into a four-axis, combined, fused deposition modeling, and paste extrusion printer. A Grasshopper 3D algorithm was devised to implement custom actuator designs according to user inputs, resulting in a G-code print file. Bending, contracting, and twisting motion actuators were parametrically designed and subsequently additively manufactured from silicone and thermoplastic elastomer (TPE) materials. Experimental testing was completed on these actuators along with their constitutive materials. Finite element models were created to simulate the actuator's kinematic performance. Having a platform method to digitally configure and directly additively manufacture custom-motion, composite soft actuators has the potential to accelerate the development of more intricate designs and lead to potential impacts in a range of areas, including in-clinic personalization of soft assistive devices and patient-specific biomedical devices.

14.
J Biomech ; 75: 28-34, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29784247

ABSTRACT

The scalp plays a crucial role in head impact biomechanics, being the first tissue involved in the impact and providing a sliding interface between the impactor and/or helmet and the skull. It is important to understand both the scalp-skull and the scalp-helmet sliding in order to determine the head response due to an impact. However, experimental data on the sliding properties of the scalp is lacking. The aim of this work was to identify the sliding properties of the scalp using cadaver heads, in terms of scalp-skull and scalp-liner (internal liner of the helmet) friction and to compare these values with that of widely used artificial headforms (HIII and magnesium EN960). The effect of the hair, the direction of sliding, the speed of the test and the normal load were considered. The experiments revealed that the sliding behaviour of the scalp under impact loading is characterised by three main phases: (1) the low friction sliding of the scalp over the skull (scalp-skull friction), (2) the tensioning effect of the scalp and (3) the sliding of the liner fabric over the scalp (scalp-liner friction). Results showed that the scalp-skull coefficient of friction (COF) is very low (0.06 ±â€¯0.048), whereas the scalp-liner COF is 0.29 ±â€¯0.07. The scalp-liner COF is statistically different from the value of the HIII-liner (0.75 ±â€¯0.06) and the magnesium EN960-liner (0.16 ±â€¯0.026). These data will lead to the improvement of current headforms for head impact standard tests, ultimately leading to more realistic head impact simulations and the optimization of helmet designs.


Subject(s)
Craniocerebral Trauma/physiopathology , Head Protective Devices , Head/physiology , Skull/physiology , Aged , Aged, 80 and over , Female , Friction , Hair , Humans , Male
15.
Ann Biomed Eng ; 46(6): 831-840, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29497893

ABSTRACT

The best way to reduce the risk of head injury (up to 69% reduction) is to wear a helmet. In recent years, the improvement of helmet standard tests focused on reproducing realistic impact conditions and including the effect of rotational acceleration. However, less importance has been given to the development of a realistic headform. The goal of this work was to evaluate the role of scalp tissue in head impact kinematics; both with respect to its mechanical properties and with respect to its sliding properties. An EN960 and HIII headform were subjected to linear and oblique impacts, respectively, both with and without porcine scalp attached. Different speeds, impact locations and impact surfaces were tested. Standard linear drop tests (EN960) showed that the scalp reduced the impact energy by up to 68.7% (rear impact). Oblique head impact tests showed how the headform-anvil friction coefficient changes when the HIII is covered with scalp, affecting linear and rotational accelerations. Therefore, the scalp plays an important role in head impacts and it should be realistically represented in headforms used for impact tests and in numerical models of the human head.


Subject(s)
Craniocerebral Trauma/physiopathology , Head Protective Devices , Models, Biological , Scalp/physiopathology , Biomechanical Phenomena , Craniocerebral Trauma/etiology , Humans
16.
J Mech Behav Biomed Mater ; 41: 241-50, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25455608

ABSTRACT

The anisotropic failure characteristics of human skin are relatively unknown at strain rates typical in impact biomechanics. This study reports the results of an experimental protocol to quantify the effect of dynamic strain rates and the effect of sample orientation with respect to the Langer lines. Uniaxial tensile tests were carried out at three strain rates (0.06s(-1), 53s(-1), and 167s(-1)) on 33 test samples excised from the back of a fresh cadaver. The mean ultimate tensile stress, mean elastic modulus and mean strain energy increased with increasing strain rates. While the stretch ratio at ultimate tensile stress was not affected by the strain rate, it was influenced by the orientation of the samples (parallel and perpendicular to the Langer lines. The orientation of the sample also had a strong influence on the ultimate tensile stress, with a mean value of 28.0 ± 5.7 MPa for parallel samples, and 15.6 ± 5.2 MPa for perpendicular samples, and on the elastic modulus, with corresponding mean values of 160.8 MPa ± 53.2 MPa and 70.6 MPa ± 59.5 MPa. The study also pointed out the difficulties in controlling the effective applied strain rate in dynamic characterization of soft tissue and the resulting abnormal stress-strain relationships. Finally, data collected in this study can be used to develop constitutive models where high loading rates are of primary interest.


Subject(s)
Materials Testing , Skin , Stress, Mechanical , Tensile Strength , Anisotropy , Humans
17.
Am J Forensic Med Pathol ; 36(3): 162-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24781391

ABSTRACT

Collaborative research between the disciplines of forensic pathology and biomechanics was undertaken to investigate the hyperelastic properties of human skin, to determine the force required for sharp instrument penetration of skin, and to develop a finite element model, which reflects the mechanisms of sharp instrument penetration. These studies have led to the development of a "stab metric," based on simulations, to describe the force magnitudes in stabbing incidents. Such a metric should, in time, replace the crudely quantitative descriptors of stabbing forces currently used by forensic pathologists.


Subject(s)
Finite Element Analysis , Models, Biological , Skin Physiological Phenomena , Wounds, Stab , Computer Simulation , Forensic Sciences , Humans
18.
Ann Biomed Eng ; 40(8): 1666-78, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22427196

ABSTRACT

Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis (p < 0.001, R(2) = 0.95) was observed. The structural parameters of the Gasser-Ogden-Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was κ = 0.1404±0.0028. The constitutive parameters µ, k(1) and k(2) were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for µ, k(1) and k(2) were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.


Subject(s)
Collagen/chemistry , Dermis/chemistry , Anisotropy , Humans
19.
J Mech Behav Biomed Mater ; 5(1): 139-48, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22100088

ABSTRACT

The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. In this study, we have investigated the influence of location and orientation on the deformation characteristics of 56 samples of excised human skin. Uniaxial tensile tests were carried out at a strain rate of 0.012 s(-1) on skin from the back. Digital Image Correlation was used for 2D strain measurement and a histological examination of the dermis was also performed. The mean ultimate tensile strength (UTS) was 21.6±8.4 MPa, the mean failure strain 54%±17%, the mean initial slope 1.18±0.88 MPa, the mean elastic modulus 83.3±34.9 MPa and the mean strain energy was 3.6±1.6 MJ/m(3). A multivariate analysis of variance has shown that these mechanical properties of skin are dependent upon the orientation of the Langer lines (P<0.0001-P=0.046). The location of specimens on the back was also found to have a significant effect on the UTS (P=0.0002), the elastic modulus (P=0.001) and the strain energy (P=0.0052). The histological investigation concluded that there is a definite correlation between the orientation of the Langer lines and the preferred orientation of collagen fibres in the dermis (P<0.001). The data obtained in this study will provide essential information for those wishing to model the skin using a structural constitutive model.


Subject(s)
Mechanical Phenomena , Skin , Aged, 80 and over , Anisotropy , Biomechanical Phenomena , Collagen/metabolism , Dermis/cytology , Dermis/metabolism , Female , Humans , Male , Regression Analysis , Skin/cytology , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...