Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 212(12): 1958-1970, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700420

ABSTRACT

Fibroblasts acquire a proinflammatory phenotype in inflammatory bowel disease, but the factors driving this process and how fibroblasts contribute to mucosal immune responses are incompletely understood. TNF superfamily member 12 (TNFSF12, or TNF-like weak inducer of apoptosis [TWEAK]) has gained interest as a mediator of chronic inflammation. In this study, we explore its role as a driver of inflammatory responses in fibroblasts and its contribution to fibroblast-monocyte interaction using human primary colonic fibroblasts, THP-1 and primary monocytes. Recombinant human TWEAK induced the expression of cytokines, chemokines, and immune receptors in primary colonic fibroblasts. The TWEAK upregulated transcriptome shared 29% homology with a previously published transcriptional profile of inflammatory fibroblasts from ulcerative colitis. TWEAK elevated surface expression of activated fibroblast markers and adhesion molecules (podoplanin [PDPN], ICAM-1, and VCAM-1) and secretion of IL-6, CCL2, and CXCL10. In coculture, fibroblasts induced monocyte adhesion and secretion of CXCL1 and IL-8, and they promoted a CD14high/ICAM-1high phenotype in THP-1 cells, which was enhanced when fibroblasts were prestimulated with TWEAK. Primary monocytes in coculture with TWEAK-treated fibroblasts had altered surface expression of CD16 and triggering receptor expressed on myeloid cells-1 (TREM-1) as well as increased CXCL1 and CXCL10 secretion. Conversely, inhibition of the noncanonical NF-κB pathway on colonic fibroblasts with a NF-κB-inducing kinase small molecule inhibitor impaired their ability to induce a CD14high phenotype on monocytes. Our results indicate that TWEAK promotes an inflammatory fibroblast-monocyte crosstalk that may be amenable for therapeutic intervention.


Subject(s)
Cell Differentiation , Colon , Cytokine TWEAK , Fibroblasts , Monocytes , Humans , Cytokine TWEAK/metabolism , Monocytes/immunology , Monocytes/metabolism , Fibroblasts/metabolism , Fibroblasts/immunology , Colon/immunology , Colon/pathology , Colon/metabolism , Cell Differentiation/immunology , Cell Communication/immunology , Inflammation/immunology , THP-1 Cells , Coculture Techniques , Cytokines/metabolism , Cell Adhesion
2.
Rev Endocr Metab Disord ; 24(5): 921-936, 2023 10.
Article in English | MEDLINE | ID: mdl-37402955

ABSTRACT

Obesity is a heterogenous disease accompanied by a broad spectrum of cardiometabolic risk profiles. Traditional paradigms for dietary weight management do not address biological heterogeneity between individuals and have catastrophically failed to combat the global pandemic of obesity-related diseases. Nutritional strategies that extend beyond basic weight management to instead target patient-specific pathophysiology are warranted. In this narrative review, we provide an overview of the tissue-level pathophysiological processes that drive patient heterogeneity to shape distinct cardiometabolic phenotypes in obesity. Specifically, we discuss how divergent physiology and postprandial phenotypes can reveal key metabolic defects within adipose, liver, or skeletal muscle, as well as the integrative involvement of the gut microbiome and the innate immune system. Finally, we highlight potential precision nutritional approaches to target these pathways and discuss recent translational evidence concerning the efficacy of such tailored dietary interventions for different obesity phenotypes, to optimise cardiometabolic benefits.


Subject(s)
Cardiovascular Diseases , Obesity , Humans , Obesity/metabolism , Nutritional Status , Liver/metabolism , Phenotype , Cardiovascular Diseases/metabolism
3.
Proc Nutr Soc ; 82(2): 208-218, 2023 05.
Article in English | MEDLINE | ID: mdl-37264892

ABSTRACT

The precision nutrition paradigm is based on the premise that substantial variation exists between human subjects in terms of diet-related disease risk and response to dietary interventions. In terms of better defining, 'the right diet for the right person at the right time' may be more appropriate than 'one-diet-fits-all'. This review will explore how systems biology and nutrigenomics approaches have advanced the precision nutrition paradigm. We will draw upon a number of elegant mechanistic studies that have enhanced our understanding with respect to the complex biology and inter-organ crosstalk, relating to inflammation and metabolism, that underpin cardio-metabolic health. Also, this review will explore the extent to which more targeted, precision nutrition approaches may attenuate adverse risk factors associated with cardio-metabolic disease. We will focus on the key characteristics or 'metabotypes' of high- v. low-risk individuals and response v. non-response to interventions, to generate greater insights with respect to risk stratification and therapeutic interventions to enhance disease prevention. The goal is to utilise systems biology to enhance understanding by underpinning more targeted nutritional approaches, which may improve efficacy of personalised nutrition interventions.


Subject(s)
Diet , Systems Biology , Humans , Nutritional Status , Nutrigenomics/methods , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...