Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(50): 15354-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26621728

ABSTRACT

Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Complementarity Determining Regions/immunology , Germ Cells/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibody Specificity/immunology , Clone Cells , Complementarity Determining Regions/chemistry , Computer Simulation , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/immunology , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Peptide Library , Protein Stability , Protein Structure, Tertiary , Rats , Sequence Alignment , Sequence Analysis, Protein , tau Proteins/chemistry , tau Proteins/immunology
2.
J Biol Chem ; 287(53): 44425-34, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23148212

ABSTRACT

Highly specific antibodies to phosphoepitopes are valuable tools to study phosphorylation in disease states, but their discovery is largely empirical, and the molecular mechanisms mediating phosphospecific binding are poorly understood. Here, we report the generation and characterization of extremely specific recombinant chicken antibodies to three phosphoepitopes on the Alzheimer disease-associated protein tau. Each antibody shows full specificity for a single phosphopeptide. The chimeric IgG pT231/pS235_1 exhibits a K(D) of 0.35 nm in 1:1 binding to its cognate phosphopeptide. This IgG is murine ortholog-cross-reactive, specifically recognizing the pathological form of tau in brain samples from Alzheimer patients and a mouse model of tauopathy. To better understand the underlying binding mechanisms allowing such remarkable specificity, we determined the structure of pT231/pS235_1 Fab in complex with its cognate phosphopeptide at 1.9 Å resolution. The Fab fragment exhibits novel complementarity determining region (CDR) structures with a "bowl-like" conformation in CDR-H2 that tightly and specifically interacts with the phospho-Thr-231 phosphate group, as well as a long, disulfide-constrained CDR-H3 that mediates peptide recognition. This binding mechanism differs distinctly from either peptide- or hapten-specific antibodies described to date. Surface plasmon resonance analyses showed that pT231/pS235_1 binds a truly compound epitope, as neither phosphorylated Ser-235 nor free peptide shows any measurable binding affinity.


Subject(s)
Alzheimer Disease/metabolism , Antibodies/immunology , Epitopes/immunology , tau Proteins/immunology , Alzheimer Disease/genetics , Amino Acid Sequence , Animals , Antibodies/chemistry , Antibodies/genetics , Brain/metabolism , Chickens , Epitopes/chemistry , Epitopes/genetics , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice , Mice, Transgenic , Molecular Sequence Data , Phosphorylation , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism
3.
J Immunol ; 188(1): 322-33, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22131336

ABSTRACT

Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.


Subject(s)
Amino Acid Substitution , Chickens/genetics , Complementarity Determining Regions/genetics , Immunoglobulin Heavy Chains/genetics , Mutation , Animals , Antibody Affinity/genetics , Camelus/genetics , Camelus/immunology , Chickens/immunology , Complementarity Determining Regions/immunology , Disulfides/immunology , Humans , Immunoglobulin Heavy Chains/immunology , Mice , Protein Stability , Species Specificity
4.
Biol Cell ; 102(1): 51-62, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19702578

ABSTRACT

BACKGROUND INFORMATION: Rab11 and Rab14 are two related Rab GTPases that are believed to function in endosomal recycling and Golgi/endosome transport processes. We, and others, have identified a group of proteins that interact with Rab11 and function as Rab11 effectors, known as the Rab11-FIPs (family interacting proteins). This protein family has been sub-classified into two groups - class I FIPs [FIP2, RCP (Rab coupling protein) and Rip11 (Rab11-interacting protein)] and class II FIPs (FIP3 and FIP4). RESULTS: In the present study we identify the class I FIPs as dual Rab-binding proteins by demonstrating that they also interact with Rab14 in a GTP-dependent manner. We show that these interactions are specific for the class I FIPs and that they occur via their C-terminal regions, which encompass the previously described RBD (Rab11-binding domain). Furthermore, we show that Rab14 significantly co-localizes with the TfnR (transferrin receptor) and that Rab14 Q70L co-localizes with Rab11a and with the class I FIPs on the ERC (endosomal recycling compartment) during interphase. Additionally, we show that during cytokinesis Rab14 localizes to the cleavage furrow/midbody. CONCLUSIONS: The data presented in the present study, which identifies the class I FIPs as the first putative effector proteins for the Rab14 GTPase, indicates greater complexity in the Rab-binding specificity of the class I FIP proteins.


Subject(s)
rab GTP-Binding Proteins/metabolism , Binding Sites , Cell Cycle/physiology , Cell Line, Tumor , Endosomes/metabolism , Female , Fluorescent Antibody Technique , Guanosine Triphosphate/metabolism , Humans , Protein Binding , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...