Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611162

ABSTRACT

Thermoplastic extrusion, a widely used method for processing thermoplastic materials, requires precise temperature control to ensure product quality. However, existing computer-aided engineering tools often oversimplify the temperature distribution calculations, leading to additional discrepancies between simulations and the actual processes. This study introduces a novel multi-region modeling approach to address this issue. By employing realistic temperature control conditions, the methodology overcomes the limitations of current numerical modeling tools. The key contributions include the development of a transient, incompressible, non-isothermal solver integrated into the OpenFOAM computational library and the implementation of a specialized boundary condition that emulates Proportional-Integral-Derivative (PID) control using real-time thermocouple measurements. The findings highlight temperature deviations at the flow channel walls and total pressure drop while demonstrating a smaller impact on velocity and flow uniformity at the outlet under steady-state conditions. This research substantially advances the understanding of thermal dynamics in extrusion processes, offering crucial insights for enhancing temperature control and laying the groundwork for more effective and precise operational strategies.

2.
Materials (Basel) ; 17(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673203

ABSTRACT

Selective laser sintering (SLS) is one of the most well-regarded additive manufacturing (AM) sub-processes, whose popularity has been increasing among numerous critical and demanding industries due to its capabilities, mainly manufacturing parts with highly complex geometries and desirable mechanical properties, with potential to replace other, more expensive, conventional processes. However, due to its various underlying multi-physics phenomena, the intrinsic complexity of the SLS process often hampers its industrial implementation. Such limitation has motivated academic interest in obtaining better insights into the process to optimize it and attain the required standards. In that regard, the usual experimental optimization methods are time-consuming and expensive and can fail to provide the optimal configurations, leading researchers to resort to computational modeling to better understand the process. The main objective of the present work is to develop a computational model capable of simulating the SLS process for polymeric applications, within an open-source framework, at a particle-length scale to assess the main process parameters' impact. Following previous developments, virgin and used polymer granules with different viscosities are implemented to better represent the actual process feedstock. The results obtained agree with the available experimental data, leading to a powerful tool to study, in greater detail, the SLS process and its physical parameters and material properties, contributing to its optimization.

3.
Polymers (Basel) ; 13(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34960881

ABSTRACT

Toe caps are one of the most important components in safety footwear, but have a significant contribution to the weight of the shoe. Efforts have been made to replace steel toe caps by polymeric ones, since they are lighter, insulated and insensitive to magnetic fields. Nevertheless, polymeric solutions require larger volumes, which has a negative impact on the shoe's aesthetics. Therefore, safety footwear manufacturers are pursuing the development of an easy, low-cost and reliable solution to optimize this component. In this work, a solid mechanics toolbox built in the open-source computational library, OpenFOAM®, was used to simulate two laboratory standard tests (15 kN compression and 200 J impact tests). To model the polymeric material behavior, a neo-Hookean hyper-elasto-plastic material law with J2 plastic criteria was employed. A commercially available plastic toe cap was characterized, and the collected data was used for assessment purposes. Close agreements, between experimental and simulated values, were achieved for both tests, with an approximate error of 5.4% and 6.8% for the displacement value in compression and impact test simulations, respectively. The results clearly demonstrate that the employed open-source finite volume computational models offer reliable results and can support the design of toe caps for the R&D footwear industry.

4.
Materials (Basel) ; 14(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916171

ABSTRACT

A methodology enabling the customization of shoes for comfort improvement is proposed and assessed. For this aim, 3D printed graded density inserts were placed in one of the critical plantar pressure zones of conventional insoles, the heel. A semi-automated routine was developed to design the 3D inserts ready for printing, which comprises three main stages: (i) the definition of the number of areas with different mesh density, (ii) the generation of 2D components with continuous graded mesh density, and (iii) the generation of a 3D component having the same 2D base mesh. The adequacy of the mesh densities used in the inserts was previously assessed through compression tests, using uniform mesh density samples. Slippers with different pairs of inserts embedded in their insoles were mechanically characterized, and their comfort was qualitatively assessed by a panel of users. All users found a particular pair, or a set, of prototype slippers more comfortable than the original ones, taken as reference, but their preferences were not consensual. This emphasizes the need for shoe customization, and the usefulness of the proposed methodology to achieve such a goal.

5.
Polymers (Basel) ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383790

ABSTRACT

This work combines experimental and numerical (computational fluid dynamics) data to better understand the kinetics of the dispersion of graphite nanoplates in a polypropylene melt, using a mixing device that consists of a series of stacked rings with an equal outer diameter and alternating larger and smaller inner diameters, thereby creating a series of converging/diverging flows. Numerical simulation of the flow assuming both inelastic and viscoelastic responses predicted the velocity, streamlines, flow type and shear and normal stress fields for the mixer. Experimental and computed data were combined to determine the trade-off between the local degree of dispersion of the PP/GnP nanocomposite, measured as area ratio, and the absolute average value of the hydrodynamic stresses multiplied by the local cumulative residence time. A strong quasi-linear relationship between the evolution of dispersion measured experimentally and the computational data was obtained. Theory was used to interpret experimental data, and the results obtained confirmed the hypotheses previously put forward by various authors that the dispersion of solid agglomerates requires not only sufficiently high hydrodynamic stresses, but also that these act during sufficient time. Based on these considerations, it was estimated that the cohesive strength of the GnP agglomerates is in the range of 5-50 kPa.

6.
Stud Health Technol Inform ; 207: 163-72, 2014.
Article in English | MEDLINE | ID: mdl-25488222

ABSTRACT

Generally, current clinical imaging methods do not provide highly detailed information about location of axonal injury, severity of injury or expected recovery of patients with traumatic brain injury (TBI). High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology. Being a novel modality, validation and quality control are essential. Thus this study aims at the development of a brain phantom to mimic the human brain in order to fill some gaps that currently exist in this area. This paper is focused on this novel imaging approach, the role of brain phantoms on its validation and the quality control, as well as, on the materials used in their construction. Furthermore, some important characteristics of fibrous materials for brain phantom are also discussed.


Subject(s)
Biomimetic Materials/chemistry , Brain Injuries, Traumatic/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging/instrumentation , Phantoms, Imaging , White Matter/diagnostic imaging , Brain/pathology , Diffusion Tensor Imaging/methods , Equipment Design , Equipment Failure Analysis , Humans , Materials Testing , Reproducibility of Results , Sensitivity and Specificity , White Matter/injuries , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...