Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Physiol Biochem ; 48(1): 85-99, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34981327

ABSTRACT

We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia (Oreochromis niloticus). Two supplementation levels were tested: 1.0 g 100 g-1 (D1) and 4.0 g 100 g-1 (D4). A control diet, without the additive (D0, 0 g 100 g-1), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g-1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.


Subject(s)
Cichlids , Oxidative Stress , Temperature , Animal Feed/analysis , Animals , Antioxidants/metabolism , Cichlids/metabolism , Diet/veterinary , Dietary Supplements/analysis , Docosahexaenoic Acids/administration & dosage , Stramenopiles/chemistry
2.
Animals (Basel) ; 11(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440774

ABSTRACT

This work aimed to evaluate Nannochloropsis spp. as feed additive in the diet of Pacific white shrimp for their effect on midgut microbiology, thermal shock resistance and immunological parameters. Initially, the digestibility of the microalgae meal was assessed, and the apparent digestibility coefficient (ADC) was determined. The ADC was, in general, high in lipids (78.88%) and eicosapentaenoic fatty acid (73.86%). Then, Nannochloropsis spp. were included in diets at four levels (0, 0.5, 1 and 2% inclusion). The shrimp were reared in 500 L clear water tanks containing 20 shrimp per tank with an initial weight of 6.05 ± 0.06 g and fed four times a day. Shrimp fed with supplemented diets containing Nannochloropsis spp. (0.5 and 2%) presented higher resistance to thermal shock when compared to the non-supplemented group (control). Shrimp fed with 1 and 2% of algae inclusion had a higher production of reactive oxygen species (ROS) when compared to other treatments. No statistical difference was observed in the immunological parameters and microbiology of the intestinal tract. Thus, the inclusion of Nannochloropsis spp. in shrimp diets at 0.5 and 2% levels increases resistance to thermal shock and ROS production in shrimp.

SELECTION OF CITATIONS
SEARCH DETAIL
...