Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 121(3): 361-373, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34998827

ABSTRACT

Atomic force microscopy is used to study the viscoelastic properties of epithelial cells in three different states. Force relaxation data are acquired from cells in suspension, adhered but single cells, and polarized cells in a confluent monolayer using different indenter geometries comprising flat bars, pyramidal cones, and spheres. We found that the fluidity of cells increased substantially from the suspended to the adherent state. Along this line, the prestress of suspended cells generated by cortical contractility is also greater than that of cells adhering to a surface. Polarized cells that are part of a confluent monolayer form an apical cap that is soft and fluid enough to respond rapidly to mechanical challenges from wounding, changes in the extracellular matrix, osmotic stress, and external deformation. In contrast to adherent cells, cells in the suspended state show a pronounced dependence of fluidity on the external areal strain. With increasing areal strain, the suspended cells become softer and more fluid. We interpret the results in terms of cytoskeletal remodeling that softens cells in the adherent state to facilitate adhesion and spreading by relieving internal active stress. However, once the cells spread on the surface they maintain their mechanical phenotype displaying viscoelastic homeostasis.


Subject(s)
Epithelial Cells , Mechanical Phenomena , Cell Adhesion , Extracellular Matrix , Homeostasis , Microscopy, Atomic Force , Stress, Mechanical
2.
Biophys J ; 116(11): 2204-2211, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31126583

ABSTRACT

Mechanical phenotyping of adherent cells has become a serious tool in cell biology to understand how cells respond to their environment and eventually to identify disease patterns such as the malignancy of cancer cells. In the steady state, homeostasis is of pivotal importance, and cells strive to maintain their internal stresses even in challenging environments and in response to external chemical and mechanical stimuli. However, a major problem exists in determining mechanical properties because many techniques, such as atomic force microscopy, that assess these properties of adherent cells locally can only address a limited number of cells and provide elastic moduli that vary substantially from cell to cell. The origin of this spread in stiffness values is largely unknown and might limit the significance of measurements. Possible reasons for the disparity are variations in cell shape and size, as well as biological reasons such as the cell cycle or polarization state of the cell. Here, we show that stiffness of adherent epithelial cells rises with increasing projected apical cell area in a nonlinear fashion. This size stiffening not only occurs as a consequence of varying cell-seeding densities, it can also be observed within a small area of a particular cell culture. Experiments with single adherent cells attached to defined areas via microcontact printing show that size stiffening is limited to cells of a confluent monolayer. This leads to the conclusion that cells possibly regulate their size distribution through cortical stress, which is enhanced in larger cells and reduced in smaller cells.


Subject(s)
Cell Size , Mechanical Phenomena , Animals , Biomechanical Phenomena , Cell Adhesion , Dogs , Madin Darby Canine Kidney Cells , Phenotype , Single-Cell Analysis
3.
Prog Biophys Mol Biol ; 144: 77-90, 2019 07.
Article in English | MEDLINE | ID: mdl-30197289

ABSTRACT

The F-actin cytoskeleton and its connection to the plasma membrane provide structure and shape of epithelial cells. In this study we focus on the impact of the F-actin cytoskeleton on the morphology and mechanical behaviour of confluent epithelial cells. F-actin depolymerisation was fostered by Latrunculin A, while depolymerisation was allayed by Jasplakinolide. The impact of drug treatment on cellular mechanics was measured using atomic force microscopy based active microrheology and force-indentation curves, while morphology was monitored by AFM imaging, electric cell-substrate impedance sensing (ECIS) experiments and fluorescence microscopy. A softening and fluidisation of the cells upon dissolution of F-actin was observed, accompanied by reduction of cell-substrate and cell-cell contacts and an altered topography. The strengthening of actin filaments upon Jasplakinolide treatment was mirrored in several mechanical properties. The largest impact was on the cellular viscosity. The cells were, however, capable of restoring their initial phenotypes, e.g., amount of actin, intercellular and cell-substrate interactions.


Subject(s)
Actins/metabolism , Cytoskeleton/metabolism , Epithelial Cells/cytology , Mechanical Phenomena , Animals , Biomechanical Phenomena/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cytoskeleton/drug effects , Depsipeptides/pharmacology , Dogs , Epithelial Cells/drug effects , Kinetics , Madin Darby Canine Kidney Cells , Mechanical Phenomena/drug effects , Phenotype , Thiazolidines/pharmacology
4.
J Phys Chem B ; 122(16): 4537-4545, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29589937

ABSTRACT

The actin cortex is a thin cross-linked network attached to the plasma membrane, which is responsible for the cell's shape during migration, division, and growth. In a reductionist approach, we created a minimal actin cortex (MAC) attached to a lipid membrane to correlate the filamentous actin architecture with its viscoelastic properties. The system is composed of a supported 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine bilayer doped with the receptor lipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P2) to which a constitutively active mutant of ezrin, which is a direct membrane-cytoskeleton linker, is bound. The formation of the MAC on the supported lipid bilayer is analyzed as a function of increasing PtdIns(4,5)P2/ezrin pinning points, revealing an increase in the intersections between actin filaments, that is, the node density of the MAC. Bead tracking microrheology on the membrane-attached actin network provides information about its viscoelastic properties. The results show that ezrin serves as a dynamic cross-linker for the actin cortex attached to the lipid bilayer and that the stiffness of the network is influenced by the pinning point density, relating the plateau storage modulus G0 to the node density of the MAC.


Subject(s)
Actins/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Actins/chemical synthesis , Fluorescence , Particle Size , Rheology , Surface Properties
5.
Biophys J ; 112(4): 724-735, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28256232

ABSTRACT

The local mechanical properties of cells are frequently probed by force indentation experiments carried out with an atomic force microscope. Application of common contact models provides a single parameter, the Young's modulus, to describe the elastic properties of cells. The viscoelastic response of cells, however, is generally measured in separate microrheological experiments that provide complex shear moduli as a function of time or frequency. Here, we present a straightforward way to obtain rheological properties of cells from regular force distance curves collected in typical force indentation measurements. The method allows us to record the stress-strain relationship as well as changes in the weak power law of the viscoelastic moduli. We derive an analytical function based on the elastic-viscoelastic correspondence principle applied to Hertzian contact mechanics to model both indentation and retraction curves. Rheological properties are described by standard viscoelastic models and the paradigmatic weak power law found to interpret the viscoelastic properties of living cells best. We compare our method with atomic force microscopy-based active oscillatory microrheology and show that the method to determine the power law coefficient is robust against drift and largely independent of the indentation depth and indenter geometry. Cells were subject to Cytochalasin D treatment to provoke a drastic change in the power law coefficient and to demonstrate the feasibility of the approach to capture rheological changes extremely fast and precisely. The method is easily adaptable to different indenter geometries and acquires viscoelastic data with high spatiotemporal resolution.


Subject(s)
Elasticity , Actins/metabolism , Animals , Cytochalasin D/metabolism , Dogs , Madin Darby Canine Kidney Cells , Rheology , Viscosity
6.
J R Soc Interface ; 12(103)2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25566882

ABSTRACT

The impact of substrate topography on the morphological and mechanical properties of confluent MDCK-II cells cultured on porous substrates was scrutinized by means of various imaging techniques as well as atomic force microscopy comprising force volume and microrheology measurements. Regardless of the pore size, ranging from 450 to 5500 nm in diameter, cells were able to span the pores. They did not crawl into the holes or grow around the pores. Generally, we found that cells cultured on non-porous surfaces are stiffer, i.e. cortical tension rises from 0.1 to 0.3 mN m(-1), and less fluid than cells grown over pores. The mechanical data are corroborated by electron microscopy imaging showing more cytoskeletal filaments on flat samples in comparison to porous ones. By contrast, cellular compliance increases with pore size and cells display a more fluid-like behaviour on larger pores. Interestingly, cells on pores larger than 3500 nm produce thick actin bundles that bridge the pores and thereby strengthen the contact zone of the cells.


Subject(s)
Actin Cytoskeleton/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Animals , Dogs , Madin Darby Canine Kidney Cells , Porosity
7.
Open Biol ; 4(5): 140046, 2014 May.
Article in English | MEDLINE | ID: mdl-24850913

ABSTRACT

Mechanical phenotyping of cells by atomic force microscopy (AFM) was proposed as a novel tool in cancer cell research as cancer cells undergo massive structural changes, comprising remodelling of the cytoskeleton and changes of their adhesive properties. In this work, we focused on the mechanical properties of human breast cell lines with different metastatic potential by AFM-based microrheology experiments. Using this technique, we are not only able to quantify the mechanical properties of living cells in the context of malignancy, but we also obtain a descriptor, namely the loss tangent, which provides model-independent information about the metastatic potential of the cell line. Including also other cell lines from different organs shows that the loss tangent (G″/G') increases generally with the metastatic potential from MCF-10A representing benign cells to highly malignant MDA-MB-231 cells.


Subject(s)
Breast Neoplasms/ultrastructure , Microscopy, Atomic Force/methods , Neoplasm Metastasis/ultrastructure , Animals , Breast Neoplasms/pathology , Cell Line , Dogs , Elasticity , Female , Humans , MCF-7 Cells , Mice , Models, Biological , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...